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Abstract. As processors continue to exploit more instruction 
level parallelism, greater demands are placed on the 
performance of the memory system. Load latency is identified as 
a major bottleneck in modern superscalar processors. In this 
study we propose load-forwarding via LSQ in issue and 
execution phases of the pipeline, in order to get shorter execution 
time. We come to conclusion how changing the LSQ size affects 
system performances. Namely, on average, a 6-9% decrease in 
the number of execution cycles with the increase of LSQ size up 
to 32 entries, which is not the case afterwards. With additional 
increase in size, gain speedup becomes insignificant, while for 
some of the test-examples the number of execution cycles slightly 
increases. 
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I. INTRODUCTION 
The objective of modern superscalar processors is to 

maximize the instruction level parallelism (ILP) that can be 
extracted from programs. The most basic method uses for 
extracting more ILP from program is out-of-order execution. 
Unfortunately, out-of-order execution by it self does not 
provide the desired level of ILP. The program's control flow 
[1] and data flow [2] impose serious limits on level of 
parallelism that can be extracted. Therefore, most modern 
processors employ aggressive branch prediction mechanisms 
to relax the control flow constraints that limit the ILP. To 
overcome the data-flow limits, researchers have suggested 
data speculation [2, 3, 4, 5, 6] to be used. 
 

II. MEMORY DEPENDENCE PROBLEM 
Modern processors exploit ILP by executing instructions 

in an order that is defferent from the sequential program order, 
which is called out-of-order execution. In other words, 
independent instructions whose operanda are ready can be 
scheduled and executed before older instruction that are still 
waiting for their operands.  
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Hence, to support out-of-order execution, the hardware 
needs to be able to precisely determine  the dependence 
among instructions so that sequential program semantics will 
not be violated. In case of register dependences, determining 
which intructions are dependent is easy due to the explicit 
encoding of architecture register names in the instruction 
format. Memory dependences are much harder to determine, 
because memory addresses are not explicitly encodedin the 
instruction format and need to be dynamically generated. 
However, this dynamic generation of memory addresses is not 
done in sequential program order. Hence, when a load 
instruction is ready to be scheduled, it is likely that there are 
older store instructions in an instruction window whose 
addresses have not yet been determined. This problem is 
know as the memory anti-aliasing [7]. A related concept, the 
process of determining if two memory instuctions access the 
same memory location is called memory disambiguation. 

There are several ways to attack the memory anti-aliasing 
problem. One possible solution is to execute all store and load 
in total program order. Considering that load and store 
instructions comprise a large fraction of instructions in most 
programs, imposing a total order on memory reference 
instructions would seriously limit the ILP that can be 
extracted from programs. A slightly less conservative 
approach is to delay the scheduling of load until all previous 
store addresses become available. This approach limits the 
amount of ILP extracted from memory disambiguation, 
because it is unlikely that a load will conflict with many of the 
previous stores. 

The aggressiveness of memory disambiguation using 
speculative scheduling also depends on how much more 
parallism we want to exploit. A less aggressive approach is to 
predict whether a load will conflict with any older store in the 
instruction window. In this case, the load can not be scheduled 
until all older stores execute. A more aggressive scheme is to 
predict that a load conflicts with a particular earlier store, if 
any, and delay the scheduling of the load until that particular 
store executed. However, a load instruction will not be 
unnecessarily delayed when the predict is corect. 

One extreme form of speculative memory operation 
scheduling is to always assume that the load that is to be 
scheduled will not conflict with any of the unknown store 
addresses. This kind of extreme speculation is not the best 
performing technique due to the cost of recovery as a result of 
misprediction. 

It is real to assume that existing of Load and Store Queue 
(LSQ) that enables, when a store instruction executes, it writes 
its data into LSQ, and a later load that is dependent on the 
store to access and read data from LSQ will increase  the 
amount of ILP. This is called load forwarding [8]. In order to 
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be able to do load forwarding, a load needs to have its address 
calculated. In continuation, the Baseline Superscalar 
Processor Model which supports usage of LSQ data structure 
will be presented. 
 

III. BASELINE SUPERSCALAR PROCESSOR MODEL 
In order to describe the usage and the management of the 

LSQ data structure, an overview of  Superscalar Processor 
Model will be given. Baseline Superscalar Processor Model 
with its five phases of pipelining is given in Figure 1.  

Register Update Unit (RUU) is a hardware data structure 
that is used to resolve data dependencies by keeping track of 
an instruction’s data and execution needs and that commits 
completed instructions in program order. 

Each register in the general purpose RegFile has two 
associated n-bit counters (n of 3 is typical) 

1. NI (number of instances) – the number of instances 
of a register as a destination register in the RUU 

2. LI (latest instance) – the number of the latest instance 
When an instruction with destination register address Ri 

is dispatched to the RUU, both its NI and LI are incremented. 
Dispatch is blocked if a destination register’s NI is 2n -1, so 
only up to 2n – 1 instances of a register can be present in the 
RUU at the same time. When an instruction is committed 
(updates the Ri value) the associated NI is decremented. And 
finally when NI = 0 the register is “free” (there are no 
instruction in the RUU that are going to write to that register) 
and LI is cleared. 

 

 
 

Fig. 1. Baseline Superscalar Processor Model 
 

This processor model support pipeline instruction flow in 
five phases: 

• Fetch (in program order):  Fetch multiple instructions 
in parallel from the I$ 

• Decode & Dispatch (in program order): 
In parallel, decode the instr’s just fetched and 
schedule them for execution by dispatching them 
to the RUU; Loads and stores are dispatched as 
two (micro)instructions – one to compute the 
effective addr and one to do the memory 
operation 

• Issue & Execute (out of program order): As soon as 
the RUU has the instr’s source data and the FU is 
free, the instr’s are issued to the FU for execution 

• Writeback (out of program order): When done the 
FU puts its results on the Result Bus which allows 
the RUU and the LSQ to be updated – the instr 
completes 

• Commit (in program order): When appropriate, 
commit the instr’s result data to the state locations 
(i.e., update D$ and RegFile) 

 
By managing the RUU as a queue, and committing 

instruction from RUU_Head, instructions are committed (aka 
retired) in the order they were received from the Decode & 
Dispatch logic (in program order). Committing the instr’s 
result data to the state locations (RegFile and D$) are buffered 
in the RUU and LSQ until commit time. 

The LI counter  allows multiple instances of a specific 
destination register to exist in the RUU at the same time via 
register renaming, and with that it prevents  output 
dependencies.  

The RUU perform the following four tasks in parallel 
every cycle: 

1. Accepts new instructions from the Decode & 
Dispatch logic 

2. Monitors the Result Bus to resolve true dependencies 
and to do write back of result data to the RUU 

3. Determines which instructions are ready for 
execution, reserves the Result Bus, and issues the 
instruction to the appropriate FU 

4. Determines if an instruction can commit (i.e., change 
the machine state) and commits the instruction if 
appropriate  

Loads and stores are dispatched to the RUU as two 
(micro)instructions – one to compute the effective addr and 
one to do the memory operation: 

 
lw R1,2(R2)    becomes  addi R0,R2,2 
           lw  R1,R0 
 

  sw R1,6(R2)    becomes     addi R0,R2,6 
           sw  R1,R0 
 
At the same time with dispatching memory instruction to 

RUU, LSQ entry for that instr is allocated. Each LSQ entry 
consists of a Tag field (RegFile addr || LI) and a Content field.  
The LI counter allows for multiple instances of stores (writes) 
to a memory address. 

When a load completes (the D$ returns the data on the 
Result Bus) or a store commits (in program order) the LSQ 
entry is released. 

Instruction dispatch is blocked if there is not a free LSQ 
entry and two free RUU entries. 

For load instruction, when the address is computed then 
the load instruction is ready to issue.  The address is copied to 
the LSQ entry with the (associatively) matching RegFile||LI 
address and is sent to the D$ for execution.  When the load 
value is returned it is copied into the destination content field 
of some instruction on the RUU. Advance the RUU_Head and 
LSQ_Head appropriately. 

For store instruction, when the address is computed then 
the store instruction is read to issue.  The computed address is 
copied to the LSQ entry with the (associatively) matching 
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RegFile||LI address along with the store data value. When the 
store instruction reaches the RUU_head, its companion LSQ 
entry (which by now is at the head of the LSQ) is sent to the 
D$ (to complete the store operation) and both the RUU_Head 
pointer and the LSQ_Head pointer are advanced. 

Performance can be improved if loads are allowed to 
bypass previous stores, this is called load bypassing. That can 
be done only if the memory addresses of all previous stores 
dispatched to the RUU are known since must first check for 
load data dependency on previous uncommitted store 
instructions. That is facilitated by having a common load and 
store queue. 

Store instructions are not allowed to bypass previous 
loads, so there are no antidependencies between loads and 
stores. Also store instructions are committed to the D$ in 
program order, so there can not be output dependencies 
between stores. 

When a load’s address becomes known, the address is 
compared (associatively) to see if it matches an entry already 
in the LSQ (i.e., if there is a pending operation to the same 
memory address). 

• If the match in the LSQ is for a load, the current load 
does not need to be issued (or executed) since the 
matching pending load will load  the data 

• If the match in the LSQ is for a store, the current load 
does not need to be issued (or executed) since the 
matching pending store can directly supply the 
destination Content for the current load 

• If there is no match, the load is issued to the LSQ and 
executed when the D$ is next available 

When the RUU# of the load instruction appears on the 
Result Bus along with the memory data, the load completes by 
updating the RUU and releasing the RUU and LSQ entries for 
committed load.  

When a store’s address (and the store data) becomes 
known, the address is compared (associatively) to see if it 
matches an entry already in the LSQ (i.e., if there is a pending 
operation to the same memory address) 

• If the match in the LSQ is for a load, the current store 
is issued to the LSQ 

• If the match in the LSQ is for a store, the current 
store is issued to the LSQ with an incremented LI 

• If there is no match, the store is dispatched to the 
LSQ 

Store instructions are held in the LSQ until the store is 
ready to commit (i.e., until its partner instruction reaches the 
RUU_Head) at which time the store is executed (i.e., the data 
and address are sent to the D$) and the RUU and LSQ entries 
are released. 

  

IV. OUT-OF-ORDER PROCESSOR TIMING 
SIMULATION 

In order to show how LSQ size affects system 
performance, simulations of execution on different test-
examples with sim-outorder simulator were made, which is 
part of The Simple Scalar Tool Set [11].  

This simulator support out-of-order issue and execution, 
based on the RUU. The RUU scheme uses a reorder buffer 

[10] to automatically rename registers and hold the results of 
pending instructions. Each cycle the reorder buffer retires 
completed instructions in program order to the architected 
register file. 

The processor’s memory system employs a load/store 
queue. Store values are placed in the queue if the store is 
speculative. Loads are dispatched to the memory system when 
the memory addresses of all previous stores are known. Loads 
may be satisfied either by the memory system or by an earlier 
store value residing in the queue, if their addresses match.  

The main loop of the simulator, located in sim_main(), is 
structured as follows: 

 
ruu_init(); 
for ( ; ; ) { 

  ruu_commit(); 
  ruu_writeback(); 
  lsq_refresh();  
  ruu_issue(); 
  ruu_dispatch(); 
  ruu_fetch(); 

} 
This loop is executed once for each target (simulated) 

machine cycle. By walking the pipeline in reverse, inter-stage 
latch synchronization can be handled correctly with only one 
pass through each stage. When the target program terminates, 
the simulator has generated the statistics. 

The fetch stage of the pipeline is implemented in 
ruu_fetch(). The fetch unit models the machine instruction 
bandwidth, and takes the following inputs: program counter, 
the predictor state and misperiction detection from the branch 
execution unit(s). Each cycle, it fetches instructions from only 
one I-cache line. After fetching the instructions, it places them 
in the dispatch queue, and probes the line predictor to obtain 
the correct cache line to access in the next cycle. 

The code for dispatch stage of pipeline resides in 
ruu_dispatch(). The routine is where instruction decoding and 
register renaming is performed. The function uses the 
instructions in the input queue filled by the fetch stage, a 
pointer to the active RUU and the rename table. Once per 
cycle, the dispatch takes as many instructions as possible from 
the fetch queue and places them in the scheduler queue. The 
dispatch routine enters and links instructions into the RUU 
and LSQ. 

The issue stage of the pipeline is contained in ruu_issue() 
and lsq_refresh(). These routines model instruction wakeup 
and issue to the functional units, tracking register and memory 
dependences. Each cycle, the scheduling routines locate the 
instructions for which the register inputs are all ready. The 
issue of ready loads is stalled if there is an earlier store with  
unresolved effective address in the LSQ. If the address of the 
earlier store matches that of the waiting load, the store value is 
forwarded to the load. Otherwise, the load is sent to the 
memory system. 

The execute stage is also handled in ruu_issue(). Each 
cycle, the routine gets as many ready instructions as possible 
from the scheduler queue. The functional units availability is 
also checked and if they have available access ports, the 
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instruction are issued. Finally, the routine schedules writeback 
events using the latency of the function units. 

The writeback stage resides in ruu_writeback(). Each cycle 
it scans the event queue for instruction completions. When it 
finds a completed instruction, it walks the dependence chain 
of instruction outputs to mark instructions that are dependent 
on the completed instruction. If a dependent instruction is 
waiting only for that completion, the routine marks it as ready 
to be issued.  

Ruu_commit() handles the instructions from the writeback 
stage that are ready to commit. This routine does in-order 
committing of instructions, updating of the data caches with 
store values and data. The routine keeps retiring instructions 
at the head of the RUU that are ready to commit until the head 
instruction is one that is not ready. When an instruction is 
committed, its result is placed into the architected register file 
and the RUU/LSQ resources devoted to those instructions are 
reclaimed. 

We have simulated the execution of five test-examples that 
are part of the SimpleScalar Tool Set (math, fmath, llong, 
lswlr, printf) by changing LSQ size between 4 and 512 entries 
(Fig. 2). 
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Fig 2. Simulation Results 

 
 It is observed that all test-examples follow the same 

performance trends in the eight different simulations. There is, 
on average, a 6-9% decrease in the number of execution 
cycles with the increase of LSQ size up to 32 entries, which is 
not the case afterwards. The additional speedup becomes 
insignificant, while for some of the test-examples (llong, 
printf) the number of execution cycles slightly increased. 

  

V. CONCLUSION 
The LSQ structure enables memory instructions that 

address the same memory locations to bypass data values 
among them during Issue and/or Execute phases in the 
pipeline. However, it is only possible if all memory 
dependences have already been resolved. As memory 
instructions get their values from the LSQ (not further down 
from the memory hierarchy), the execution time is presumably 
shorter. The main concern is: how the LSQ size affects system 
performance? 

From the previous, we come to a conclusion that even 
relatively small queue (32 entries in our case) is large enough 
to perceive performance gain. Further increase in queue size 
does not lead to additional speedup and, in some cases, it 
negatively affects system performance. 
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