

The Effect of Load/Store Queue Size on System
Performance

Daniela Curcievska1, Pece Mitrevski1 and Marjan Gusev2

Abstract. As processors continue to exploit more instruction
level parallelism, greater demands are placed on the
performance of the memory system. Load latency is identified as
a major bottleneck in modern superscalar processors. In this
study we propose load-forwarding via LSQ in issue and
execution phases of the pipeline, in order to get shorter execution
time. We come to conclusion how changing the LSQ size affects
system performances. Namely, on average, a 6-9% decrease in
the number of execution cycles with the increase of LSQ size up
to 32 entries, which is not the case afterwards. With additional
increase in size, gain speedup becomes insignificant, while for
some of the test-examples the number of execution cycles slightly
increases.

Keywords. ILP, memory, memory instructions, load forwarding,
pipeline, RUU, LSQ

I. INTRODUCTION
The objective of modern superscalar processors is to

maximize the instruction level parallelism (ILP) that can be
extracted from programs. The most basic method uses for
extracting more ILP from program is out-of-order execution.
Unfortunately, out-of-order execution by it self does not
provide the desired level of ILP. The program's control flow
[1] and data flow [2] impose serious limits on level of
parallelism that can be extracted. Therefore, most modern
processors employ aggressive branch prediction mechanisms
to relax the control flow constraints that limit the ILP. To
overcome the data-flow limits, researchers have suggested
data speculation [2, 3, 4, 5, 6] to be used.

II. MEMORY DEPENDENCE PROBLEM
Modern processors exploit ILP by executing instructions

in an order that is defferent from the sequential program order,
which is called out-of-order execution. In other words,
independent instructions whose operanda are ready can be
scheduled and executed before older instruction that are still
waiting for their operands.

1Daniela Curcievska and Pece Mitrevski are with the Faculty of

Technical Sciences, University “Sv. Kliment Ohridski”, I. L. Ribar
bb, 7000 Bitola, Macedonia, E-mail: daniela.curcievska@uklo.edu.
mk, pece.mitrevski@uklo.edu.mk

2Marjan Gusev is with the Institute of Informatics, Faculty of
Science, “Ss. Cyril and Methodius” University, Arhimedova 5, P.O
Box 162, 1000 Skopje, Macedonia, Email: marjan@on.net.mk

Hence, to support out-of-order execution, the hardware
needs to be able to precisely determine the dependence
among instructions so that sequential program semantics will
not be violated. In case of register dependences, determining
which intructions are dependent is easy due to the explicit
encoding of architecture register names in the instruction
format. Memory dependences are much harder to determine,
because memory addresses are not explicitly encodedin the
instruction format and need to be dynamically generated.
However, this dynamic generation of memory addresses is not
done in sequential program order. Hence, when a load
instruction is ready to be scheduled, it is likely that there are
older store instructions in an instruction window whose
addresses have not yet been determined. This problem is
know as the memory anti-aliasing [7]. A related concept, the
process of determining if two memory instuctions access the
same memory location is called memory disambiguation.

There are several ways to attack the memory anti-aliasing
problem. One possible solution is to execute all store and load
in total program order. Considering that load and store
instructions comprise a large fraction of instructions in most
programs, imposing a total order on memory reference
instructions would seriously limit the ILP that can be
extracted from programs. A slightly less conservative
approach is to delay the scheduling of load until all previous
store addresses become available. This approach limits the
amount of ILP extracted from memory disambiguation,
because it is unlikely that a load will conflict with many of the
previous stores.

The aggressiveness of memory disambiguation using
speculative scheduling also depends on how much more
parallism we want to exploit. A less aggressive approach is to
predict whether a load will conflict with any older store in the
instruction window. In this case, the load can not be scheduled
until all older stores execute. A more aggressive scheme is to
predict that a load conflicts with a particular earlier store, if
any, and delay the scheduling of the load until that particular
store executed. However, a load instruction will not be
unnecessarily delayed when the predict is corect.

One extreme form of speculative memory operation
scheduling is to always assume that the load that is to be
scheduled will not conflict with any of the unknown store
addresses. This kind of extreme speculation is not the best
performing technique due to the cost of recovery as a result of
misprediction.

It is real to assume that existing of Load and Store Queue
(LSQ) that enables, when a store instruction executes, it writes
its data into LSQ, and a later load that is dependent on the
store to access and read data from LSQ will increase the
amount of ILP. This is called load forwarding [8]. In order to

151

The Effect of Load/Store Queue Size on System Performance

be able to do load forwarding, a load needs to have its address
calculated. In continuation, the Baseline Superscalar
Processor Model which supports usage of LSQ data structure
will be presented.

III. BASELINE SUPERSCALAR PROCESSOR MODEL
In order to describe the usage and the management of the

LSQ data structure, an overview of Superscalar Processor
Model will be given. Baseline Superscalar Processor Model
with its five phases of pipelining is given in Figure 1.

Register Update Unit (RUU) is a hardware data structure
that is used to resolve data dependencies by keeping track of
an instruction’s data and execution needs and that commits
completed instructions in program order.

Each register in the general purpose RegFile has two
associated n-bit counters (n of 3 is typical)

1. NI (number of instances) – the number of instances
of a register as a destination register in the RUU

2. LI (latest instance) – the number of the latest instance
When an instruction with destination register address Ri

is dispatched to the RUU, both its NI and LI are incremented.
Dispatch is blocked if a destination register’s NI is 2n -1, so
only up to 2n – 1 instances of a register can be present in the
RUU at the same time. When an instruction is committed
(updates the Ri value) the associated NI is decremented. And
finally when NI = 0 the register is “free” (there are no
instruction in the RUU that are going to write to that register)
and LI is cleared.

Fig. 1. Baseline Superscalar Processor Model

This processor model support pipeline instruction flow in
five phases:

• Fetch (in program order): Fetch multiple instructions
in parallel from the I$

• Decode & Dispatch (in program order):
In parallel, decode the instr’s just fetched and
schedule them for execution by dispatching them
to the RUU; Loads and stores are dispatched as
two (micro)instructions – one to compute the
effective addr and one to do the memory
operation

• Issue & Execute (out of program order): As soon as
the RUU has the instr’s source data and the FU is
free, the instr’s are issued to the FU for execution

• Writeback (out of program order): When done the
FU puts its results on the Result Bus which allows
the RUU and the LSQ to be updated – the instr
completes

• Commit (in program order): When appropriate,
commit the instr’s result data to the state locations
(i.e., update D$ and RegFile)

By managing the RUU as a queue, and committing

instruction from RUU_Head, instructions are committed (aka
retired) in the order they were received from the Decode &
Dispatch logic (in program order). Committing the instr’s
result data to the state locations (RegFile and D$) are buffered
in the RUU and LSQ until commit time.

The LI counter allows multiple instances of a specific
destination register to exist in the RUU at the same time via
register renaming, and with that it prevents output
dependencies.

The RUU perform the following four tasks in parallel
every cycle:

1. Accepts new instructions from the Decode &
Dispatch logic

2. Monitors the Result Bus to resolve true dependencies
and to do write back of result data to the RUU

3. Determines which instructions are ready for
execution, reserves the Result Bus, and issues the
instruction to the appropriate FU

4. Determines if an instruction can commit (i.e., change
the machine state) and commits the instruction if
appropriate

Loads and stores are dispatched to the RUU as two
(micro)instructions – one to compute the effective addr and
one to do the memory operation:

lw R1,2(R2) becomes addi R0,R2,2
 lw R1,R0

 sw R1,6(R2) becomes addi R0,R2,6
 sw R1,R0

At the same time with dispatching memory instruction to

RUU, LSQ entry for that instr is allocated. Each LSQ entry
consists of a Tag field (RegFile addr || LI) and a Content field.
The LI counter allows for multiple instances of stores (writes)
to a memory address.

When a load completes (the D$ returns the data on the
Result Bus) or a store commits (in program order) the LSQ
entry is released.

Instruction dispatch is blocked if there is not a free LSQ
entry and two free RUU entries.

For load instruction, when the address is computed then
the load instruction is ready to issue. The address is copied to
the LSQ entry with the (associatively) matching RegFile||LI
address and is sent to the D$ for execution. When the load
value is returned it is copied into the destination content field
of some instruction on the RUU. Advance the RUU_Head and
LSQ_Head appropriately.

For store instruction, when the address is computed then
the store instruction is read to issue. The computed address is
copied to the LSQ entry with the (associatively) matching

152

Daniela Curcievska, Pece Mitrevski and Marjan Gusev

RegFile||LI address along with the store data value. When the
store instruction reaches the RUU_head, its companion LSQ
entry (which by now is at the head of the LSQ) is sent to the
D$ (to complete the store operation) and both the RUU_Head
pointer and the LSQ_Head pointer are advanced.

Performance can be improved if loads are allowed to
bypass previous stores, this is called load bypassing. That can
be done only if the memory addresses of all previous stores
dispatched to the RUU are known since must first check for
load data dependency on previous uncommitted store
instructions. That is facilitated by having a common load and
store queue.

Store instructions are not allowed to bypass previous
loads, so there are no antidependencies between loads and
stores. Also store instructions are committed to the D$ in
program order, so there can not be output dependencies
between stores.

When a load’s address becomes known, the address is
compared (associatively) to see if it matches an entry already
in the LSQ (i.e., if there is a pending operation to the same
memory address).

• If the match in the LSQ is for a load, the current load
does not need to be issued (or executed) since the
matching pending load will load the data

• If the match in the LSQ is for a store, the current load
does not need to be issued (or executed) since the
matching pending store can directly supply the
destination Content for the current load

• If there is no match, the load is issued to the LSQ and
executed when the D$ is next available

When the RUU# of the load instruction appears on the
Result Bus along with the memory data, the load completes by
updating the RUU and releasing the RUU and LSQ entries for
committed load.

When a store’s address (and the store data) becomes
known, the address is compared (associatively) to see if it
matches an entry already in the LSQ (i.e., if there is a pending
operation to the same memory address)

• If the match in the LSQ is for a load, the current store
is issued to the LSQ

• If the match in the LSQ is for a store, the current
store is issued to the LSQ with an incremented LI

• If there is no match, the store is dispatched to the
LSQ

Store instructions are held in the LSQ until the store is
ready to commit (i.e., until its partner instruction reaches the
RUU_Head) at which time the store is executed (i.e., the data
and address are sent to the D$) and the RUU and LSQ entries
are released.

IV. OUT-OF-ORDER PROCESSOR TIMING
SIMULATION

In order to show how LSQ size affects system
performance, simulations of execution on different test-
examples with sim-outorder simulator were made, which is
part of The Simple Scalar Tool Set [11].

This simulator support out-of-order issue and execution,
based on the RUU. The RUU scheme uses a reorder buffer

[10] to automatically rename registers and hold the results of
pending instructions. Each cycle the reorder buffer retires
completed instructions in program order to the architected
register file.

The processor’s memory system employs a load/store
queue. Store values are placed in the queue if the store is
speculative. Loads are dispatched to the memory system when
the memory addresses of all previous stores are known. Loads
may be satisfied either by the memory system or by an earlier
store value residing in the queue, if their addresses match.

The main loop of the simulator, located in sim_main(), is
structured as follows:

ruu_init();
for (; ;) {

 ruu_commit();
 ruu_writeback();
 lsq_refresh();
 ruu_issue();
 ruu_dispatch();
 ruu_fetch();

}
This loop is executed once for each target (simulated)

machine cycle. By walking the pipeline in reverse, inter-stage
latch synchronization can be handled correctly with only one
pass through each stage. When the target program terminates,
the simulator has generated the statistics.

The fetch stage of the pipeline is implemented in
ruu_fetch(). The fetch unit models the machine instruction
bandwidth, and takes the following inputs: program counter,
the predictor state and misperiction detection from the branch
execution unit(s). Each cycle, it fetches instructions from only
one I-cache line. After fetching the instructions, it places them
in the dispatch queue, and probes the line predictor to obtain
the correct cache line to access in the next cycle.

The code for dispatch stage of pipeline resides in
ruu_dispatch(). The routine is where instruction decoding and
register renaming is performed. The function uses the
instructions in the input queue filled by the fetch stage, a
pointer to the active RUU and the rename table. Once per
cycle, the dispatch takes as many instructions as possible from
the fetch queue and places them in the scheduler queue. The
dispatch routine enters and links instructions into the RUU
and LSQ.

The issue stage of the pipeline is contained in ruu_issue()
and lsq_refresh(). These routines model instruction wakeup
and issue to the functional units, tracking register and memory
dependences. Each cycle, the scheduling routines locate the
instructions for which the register inputs are all ready. The
issue of ready loads is stalled if there is an earlier store with
unresolved effective address in the LSQ. If the address of the
earlier store matches that of the waiting load, the store value is
forwarded to the load. Otherwise, the load is sent to the
memory system.

The execute stage is also handled in ruu_issue(). Each
cycle, the routine gets as many ready instructions as possible
from the scheduler queue. The functional units availability is
also checked and if they have available access ports, the

153

The Effect of Load/Store Queue Size on System Performance

instruction are issued. Finally, the routine schedules writeback
events using the latency of the function units.

The writeback stage resides in ruu_writeback(). Each cycle
it scans the event queue for instruction completions. When it
finds a completed instruction, it walks the dependence chain
of instruction outputs to mark instructions that are dependent
on the completed instruction. If a dependent instruction is
waiting only for that completion, the routine marks it as ready
to be issued.

Ruu_commit() handles the instructions from the writeback
stage that are ready to commit. This routine does in-order
committing of instructions, updating of the data caches with
store values and data. The routine keeps retiring instructions
at the head of the RUU that are ready to commit until the head
instruction is one that is not ready. When an instruction is
committed, its result is placed into the architected register file
and the RUU/LSQ resources devoted to those instructions are
reclaimed.

We have simulated the execution of five test-examples that
are part of the SimpleScalar Tool Set (math, fmath, llong,
lswlr, printf) by changing LSQ size between 4 and 512 entries
(Fig. 2).

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

4 8 16 32 64 128 256 512

Големина на LSQ

#ц
ик
лу
си

fmath
math
llong
lswlr
printf

Fig 2. Simulation Results

 It is observed that all test-examples follow the same

performance trends in the eight different simulations. There is,
on average, a 6-9% decrease in the number of execution
cycles with the increase of LSQ size up to 32 entries, which is
not the case afterwards. The additional speedup becomes
insignificant, while for some of the test-examples (llong,
printf) the number of execution cycles slightly increased.

V. CONCLUSION
The LSQ structure enables memory instructions that

address the same memory locations to bypass data values
among them during Issue and/or Execute phases in the
pipeline. However, it is only possible if all memory
dependences have already been resolved. As memory
instructions get their values from the LSQ (not further down
from the memory hierarchy), the execution time is presumably
shorter. The main concern is: how the LSQ size affects system
performance?

From the previous, we come to a conclusion that even
relatively small queue (32 entries in our case) is large enough
to perceive performance gain. Further increase in queue size
does not lead to additional speedup and, in some cases, it
negatively affects system performance.

REFERENCES
 [1] Lam M.S. and Wilson R. P., “Limits of Control Flow on

Parallelism”, Proceedings of the 19th Annual Symposium on
Computer Architecture; May 1992.

[2] Lipasti M. H and Shen J.P., “Exceeding the Dataflow limit via
Value Speculation”, Proceedings of the 29th Annual Syposium
on Microarchitecture; December 1996.

[3] Lipasti M. H, Wilkerson C. B. and Shen J. P.,”Value Locality
and Load Value Prediction,” Proceedings of 7th International
Conference on Architectural Support for Programming
Languages and Operating System; October 1996

[4] Moshovos A., Breach S.E.,Vijaykumar T. N. and Sohi G. S.,
”Dynamic Speculation Synchronization of Data Dependence,”
Proceedings of the 24th Annual Symposium on Computer
Architecture; June 1997

[5] Gusev M., Mitrevski P., “Modeling and Performance
Evaluation of Branch and Value Prediction in ILP Processors”,
International Journal of Computer Mathematics, Vol. 80, No. 1,
pp. 19-46, 2003

[6] Mitrevski P., Gusev M., “On the Performance Potential of
Speculative Execution Based on Branch and Value Prediction”,
International Scientific Journal Facta Universitatis, Series:
Electronics and Energetics, Vol. 16, No. 1, pp. 83-91, 2003

[7] Patt Y. N., Melvin S.W., Hwu W.W. and Shebanow, “Critical
Issue Regarding HPS, A High Performance Microarchitecture,”
Proceedings of the 18th Annual ACM/IEEE Workshop on
Microprogramming; December 1985

[8] Johnson M., Superscalar Microprocessor Design. Englewood
Cliffs N. J.; Printice Hall, 1991

[9] Patterson D.A. and Hennessy J.L. Computer Organization and
Design. Morgan Kauffman Publishers, 2005

[10] Sohi G.S., Instruction Issue Logic for High Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers,
IEEE Transactions on Computers, Volume 39, Issue 3; March
1990

[11] Austin T.M. and Burger D., The SimpleScalar Tool Set, Version
2.0. Technical Raport 1342, Computer Sciences Department,
University of Wisconsin, Medison, June 1997

154

