

Overloaded IP Node With Implemented Priority Queuing
 QoS Mechanism

Ilija Efnusev1 and Toni Janevski2

Abstract – Although QoS in IP is reality now days, its
implementation with all of its power is still negligible. More
research before putting it into force is needed. Although the
research in this paper is just a tiny part of the whole QoS
mechanism, still it is an integral part of the whole idea and
brings valuable conclusions.

This paper analyses the priority queuing simulated on a single
IP operating node overloaded of incoming traffic. The incoming
traffic is divided in different flows with different priorities,
which simulates the priority queuing mechanism. The simulation
results show the different output traffic parameters for each
flow.

Keywords – Quality of service (QoS), IP, Simulation, Priority
Queuing, Overloaded

I. INTRODUCTION

With the computerization of the modern world, new
applications are emerging every day. Most of this applications
demand remote access, shared resources and globalization of
information. This indicates that remote transfer of information
is becoming more demanding. The transfer of information
needs to be faster and faster.

In the moment we can say that IP won the battle for global
transfer technology. As this technology was created to be
based on “best effort” transfer of information, the fast
developing information world brought new challenges in the
IP technology [1]. With the new applications, new services
emerge. In these services, speed is not the only limit. Different
front-end services demand variety of requirements to be met:
maximum Packet Delay, maximum Jitter, minimal Bit Rate,
maximum Packet Loss etc. This resulted in IP protocol
improvement with the new QoS mechanisms [2].

II. QOS ARCHITECTURE

The QoS architecture needs to satisfy different parameters,
on different network levels and in different network parts.
This brings us to a complex QoS architecture that has to
control the specified parameters of a service requested by the
end-user application over different network elements. This

means that signaling and traffic admission and control has to
be established between network elements.

Fig. 1. QoS architectural framework

The complex QoS architecture has been a target of many

researchers during the last couple of years. Finally in May
2004 ITU-T came out with the Y.1291 recommendation for
the QoS architecture [2]. According to this recommendation
the QoS building blocks are organized into three planes, as
showed on Fig 1.

The QoS mechanism may refer only to a specific network
node (like the Packet marking) or to a network segment (like
the QoS routing). This type of architecture requires signaling
between network nodes no matter of which part of the
network those nodes belong to. The signaling between the
QoS segments belonging to the Data plane block is closed in
the node (device) and is chosen by the manufacturer, while the
signaling in the Control or Management plane is between two
or more nodes, so it requires a signaling protocol. The QoS
architecture is just a logical framework, so it puts no
restrictions of that how the different QoS mechanisms and
signaling between them will be realized. Simulating the whole
QoS architectural framework is a complicated and demanding
process, so only the queuing and scheduling mechanisms will
be analyzed in this paper.

III. QUEUING AND SCHEDULING QOS MECHANISM

This mechanism controls which of the incoming packets to
transmit to an outgoing link. The incoming traffic could be
considered as part of a queuing system, consisted of multiple
queues and a scheduler. So by controlling the queuing and
scheduling of packets the QoS requirements could be met.
This mechanism can still be divided into several approaches:

1Ilija Efnusev is Quality of Service Specialist in T-Mobile
Macedonia AD. Skopje, Total Quality Management Department,
Orce Nikolov bb. Skopje Macedonia, ilija.efnushev@t-
mobile.com.mk

2 Toni Janevski is Prof. Dr. at the “St. Cyril and Methodius”
University in Skopje, Faculty of Electrical Engineering and
Information Technologies, Dept. of Telecommunications, Karpos 2
bb. Skopje, Macedonia, tonij@etf.ukim.edu.mk

165

Overloaded IP Node With Implemented Priority Queuing QoS Mechanism

 First-In, First-Out (FIFO) queuing: This is when
packets are placed into a single queue and they are
served in the same order as they arrive in the queue.

 Fair queuing: This is when packets are classified into
flows and then assigned to queues dedicated to the
respective flows. Queues are serviced in round robin
method, where empty queues are skipped. This is also
referred to as a per-flow or flow-based queuing, where
statistically every flow gets the same attention.

 Priority queuing: This is when packets are first
classified and then placed into different priority queues.
Packets are scheduled from the head of a given queue
only if all queues of higher priority are empty. Within
each of the priority queues, packets are scheduled in
first-in, first-out order.

 Weighted fair queuing: This is when packets are
classified into flows and assigned to queues dedicated to
respective flows. A queue is assigned a percentage of
output bandwidth according to the bandwidth need of
the corresponding flow. By distinguishing variable
length packets, this approach also prevents flows with
larger packets from being allocated more bandwidth
than those with smaller packets.

 Class-based queuing: This is when packets are
classified into various service classes and then assigned
to queues assigned to the service classes, respectively.
Each queue can be assigned a different percentage of
the output bandwidth and is serviced in round robin.
Empty queues are skipped

IV. SIMULATION MODEL

The simulations were made by custom programmed
simulator in C. This simulator was made with the purpose of
studying the queuing and scheduling QoS mechanisms. The
basic model of the simulated node is given on Fig. 2

Fig. 2 Simulation Model

A. Simulator characteristics

The custom made simulator has the following
characteristics:

 10 buffers with 10 kB of buffer space
 Packets in each buffer are served by the FIFO queuing.
 If the buffer is full incoming packets are dropped.
 Each buffer together with the generator simulates one

flow defined in the ITU QoS architecture.

 The buffers have different priority. The first buffer has
the highest, and the 10-th has the lowest priority.

 A buffer with lower priority is only served if all the
buffers with higher priority are empty.

 The entering traffic is equally distributed in flows,
depending on the number of flows used (ex: If the
incoming traffic is 100 Mbps and we have 4 flows, each
flow would have speed of 25 Mbps)

 The Node works with speed of 100 Mbps, and serves
packet by packet.

 The output buffer is unlimited
 The generators are defined with by their speed. They

generate packets with Packet length between 50 and
1500 Bytes (the size of the packet exponentially
distributed), and inter-arrival times also exponentially
distributed. This simulation model is according the
propositions in the reference paper [3].

B. Measured parameters

The simulator measures the following parameters:
 Transmitted Flow Bit Rate, measured in %. This is a

parameter that shows the % of the Mean Bit Rate of the
Flow at the output of the node, compared to the Total
Bit rate at the nodes output, according to equation (1).

%100
eutpuBitRatTotalNodeO

eMeanBitRatOutputFlow
tedFlowBitRaTransmitte = (1)

 Lost Packets, measured in %. This shows the number
of packets lost compared to the total incoming packets,
per flow. See equation (2).

 %100
PacketsFlows GeneratedTotal

acketsFlowsLostP
ostPacketsPercentOfL = (2)

 Mean Delay. This is the average delay of the packets in

the flow, calculated as the time difference at the input
and output time of the packet in the Node, formula (3).
This includes the waiting time in the buffer, plus the
serving time by the node.

N

Nn

n
ninput

t
noutput

t

MeanDelay

∑
=

=
−

= 0
)

)()(
(

 (3)

 Jitter. This shows the time deviation of the packets at
the output from the mean expected output time. This
parameter is calculated according to the formula (4).

N

Nn

n
ninput

t
noutput

tMeanDelay

Jitter

∑
=

=
−−

= 0
|)

)()(
(|

 (4)

166

Ilija Efnusev and Toni Janevski

V. SIMULATION RESULTS

These simulations were made with the constraint that
incoming traffic speed is double than the serving nodes speed.
So depending on the number of flows, each flows bit rate is
200Mbps/N, where N is the number of flows. Each flow can
be considered as a service which needs different QoS
parameters to be satisfied. This simulates what will happen if
there is no flow control between the nodes in the network and
in one moment the incoming traffic doubles.

Each of the measured parameters in the simulation will be
discussed separately.

A. Transmitted Flow Bit Rate

This parameter actually shows which % of the output mean
bit rate (the serving rate of the node) has each Flow at the
output buffer of the node. The measured results are shown in
Fig. 3. From the figure it is clear that the total output Bit Rate
(utilization of the output link) is bigger when traffic is
segmented in more flows. This is due the fact that from time
to time if there is only one buffer, there is a probability that it
might be empty although the packets on the input are coming
with bigger speed than they are served. While when there are
more buffers the node starts processing immediately the
packets in the next buffers. Because the packets from lower
priority queues are served only when all of the queues with
higher priority are empty it can be seen that lower priority
flows are rarely served. So they have low transmission rate, as
we will se later on Fig.4 they have great packet loss. This
leads to a conclusion that, segmenting the flows in more than
four flows makes the node unstable, and with terrible
performance when overloaded.

0,00

20,00

40,00

60,00

80,00

100,00

1
Fl

ow

2
Fl

ow
s

3
Fl

ow
s

4
Fl

ow
s

5
Fl

ow
s

6
Fl

ow
s

7
Fl

ow
s

8
Fl

ow
s

9
Fl

ow
s

10
 F

lo
w

s

Tr
an

sm
itt

ed
 B

it
R

at
e

[%
]

Tenth Flow

Ninth Flow

Eighth Flow

Seventh Flow

Sixth Flow

Fifth Flow

Fourth Flow

Third Flow

Second Flow

First Flow

Fig. 3 Transmitted Bit Rate [%]

B. Packet Loss

This parameter shows the percent of the packets that are
lost from each flow. Packets get lost if the buffer of the flow
is full and new packet is generated by that flow. The results
are shown on Fig. 4. As it can be seen in the figure when
traffic is separated in more than 4 flows there is packet loss of
over 90% in the flows with lower priorities. This means that
these flows are blocked and the node doesn’t transmit their
traffic further. This brings us to the conclusion that flows with
lower priorities would have to implement a mechanism of
packet retransmission. If the overloading of the node is just
for a short time this packets would be retransmitted and the
services defined in this flows will continue functioning with
some delay. But if the overloading of the node is continuous
for these services it would seem like the node is down.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1
Fl

ow

2
Fl

ow
s

3
Fl

ow
s

4
Fl

ow
s

5
Fl

ow
s

6
Fl

ow
s

7
Fl

ow
s

8
Fl

ow
s

9
Fl

ow
s

10
 F

lo
w

s

Pa
ck

et
 L

os
s

[%
]

First Flow Second Flow Third Flow Fourth Flow
Fifth Flow Sixth Flow Seventh Flow Eighth Flow
Ninth Flow Tenth Flow Total

Fig. 4 Packet Loss [%]

B. Mean Delay

This parameter shows the mean delay that the packets
experience when served in the node. The delay is as a result of
the waiting time in the buffer and the time needed for the
packet to be served by the node. The mean delay of each flow
is shown on Fig. 5 given in [ms] on a logarithmic scale. Flows
with lower priority have enormous delay when the node is
overloaded due to their waiting time in the buffer. The highest
priority flows tend to the average serving time of the node
according to equation (5).

]/[

][

sbitSpeedNodeOutput

bitketSizeAveragePac
eServingTim = (5)

From the figure it is clear that the services defined in flows
with lower priorities have to be tolerant to packet delay
because if we consider that this is just the delay at one node

167

Overloaded IP Node With Implemented Priority Queuing QoS Mechanism

the total delay in a network would be n times bigger, where n
is the number of nodes. When there are more than 4 flows,
delays are unbearable for any existing IP service.

0,01

0,1

1

10

100

1000

10000

100000
1

Fl
ow

2
Fl

ow
s

3
Fl

ow
s

4
Fl

ow
s

5
Fl

ow
s

6
Fl

ow
s

7
Fl

ow
s

8
Fl

ow
s

9
Fl

ow
s

10
 F

lo
w

s

lo
g

M
ea

n
D
el

ay
 [m

s]

First Flow
Second Flow
Third Flow
Fourth Flow
Fifth Flow
Sixth Flow
Seventh Flow
Eighth Flow
Ninth Flow
Tenth Flow

Fig. 5 Mean delay [ms]

B. Jitter

This parameter actually is the mean deviation from the
delay of the packets served by the node. The results of the
simulation are shown on Fig. 6 in [ms] on a logarithmic scale.
The jitter is extreme for flows with lower priority. Services
like internet browsing or file download are resistant to jitter
and delay but when there are more than 4 flows the jitter is
unbearable even for these services. Other real-time services
like video and audio streaming are intolerant to jitter so this
kind of services must be defined in flows of highest priority.

0,01

0,1

1

10

100

1000

10000

1
Fl

ow

2
Fl

ow
s

3
Fl

ow
s

4
Fl

ow
s

5
Fl

ow
s

6
Fl

ow
s

7
Fl

ow
s

8
Fl

ow
s

9
Fl

ow
s

10
 F

lo
w

s

lo
g

Ji
tte

r [
m

s]

First Flow
Second Flow
Third Flow
Fourth Flow
Fifth Flow
Sixth Flow
Seventh Flow
Eighth Flow
Ninth Flow
Tenth Flow

Fig. 6 Jitter [ms]

VI. CONCLUSION

As it can be seen from the simulation results, this kind of
implementation of QoS on node level shows deteriorated
performance in lower priority flows, when the node is
overloaded. This is especially visible when the number of
flows is grater (more different service levels are defined). So
by the simple implementation of QoS and dividing the traffic
in different flows, the low priority flows won’t show any
performance. As it can be seen in the simulations results, there
is a packet loss of over 90% at almost half of the flows. But
this is not the only problem. All of the other parameters are
also extremely degraded as well. Looking at all the parameters
together it can be said that four is the optimal number of flows
with different QoS parameters that should be defined. Besides
this, all parameters also suggest that a simple implementation
of the QoS mechanisms on node level needs to be combined
with other QoS mechanisms: flow control, QoS routing and
other, to achieve performance and sustain service quality.
With this paper it is clearly shown that implementing QoS in
just part of the network is not a solution. There has to be a
continuity of QoS mechanisms across the network and
between networks, so that QoS would really work. Service
providers have to become conscious of the power that QoS
brings and upgrade their systems to support the QoS
mechanisms.

ACKNOWLEDGEMENT

I would like to express my gratitude to the professor Toni
Janevski and the Telecommunication Institute at the Faculty
of Electrical Engineering and Information Technologies at
“St. Cyril and Methodius” University in Skopje, for the shown
cooperation and help in my research.

REFERENCES

[1] Toni Janevski, Traffic Analysis and Design of Wireless IP
Networks, Artech House Inc. 2003

[2] ITU-T, An architectural framework for support of Quality of
Service (QoS) in packet networks (Ref. No.: Y.1291)

[3] Zafer Sahinoglu and Sirin Tekinay, Multimedia Networks: Self-
Similar Traffic and Network Performance, New Jersey Institute
of Technology.

168

