

Simulation of Next Generation Network Applications
Ivaylo I. Atanasov1

Abstract – The paper presents a way for functional validation of
an approach to service creation. The essence of the approach is
synthesis of a new mark-up language used to describe service logic.
An application that uses network functions accessed through open
programming interfaces is designed. The application logic is
described using the proposed mark-up language and the
application behaviour is simulated by the use of network resource
gateway simulator.

Keywords – Mark-up languages for service creation,

Parlay/OSA interfaces, network resource gateway simulator

I. INTRODUCTION

Next generation networks (NGN) are expected to provide
content rich and customized services. To be competitive
network operators need to have not only the right technology,
but the right tools to create these services efficiently.

An important ingredient of NGN service architecture is the
concept of Application Programming Interfaces (APIs) that
allows third parties to get in on developing services for
telecommunication networks, with transportable suppliers
independent skills [1]. A promising technology providing
access to network function through open API is Parlay/OSA
(Open service access).

One of the ways of implementing Parlay/OSA is by the use
of mark-up languages. There exist some markup languages for
service creation [2], but none of them supports the full range of
network functions exposed by Parlay/OSA.

Service Logic Processing Language (SLPL) is a new mark-
up language developed to meet challenges of NGN service
creation [3]. The language supports the whole palette of
network functions exposed by Parlay/OSA interfaces. To allow
language usability an SLPL interpreter is developed. The SLPL
functionality is validated by simulation.

First in the paper, the network resource simulator used is
presented. Then an example that uses network functions
accessed through Parlay/OSA interfaces is considered. The
suggested mark-up language SLPL is presented in the context
of the application logic description. Last, the process of
simulation of the application functional behaviour is explained.

II. NETWORK RESOURCE GATEWAY SIMULATOR

To validate the approach applicability the Ericsson Network
Resource Gateway (NRG) simulator is used [4]. The NRG
simulator emulates NRG node and its purpose is to test

applications in absence of an actual NRG running on a live
telecom network.

The NRG product is Service Capability Server, which
provides network services to applications in a secure way and
controls the network elements. Beneath the service capability
server is the telecom network which uses a wide range of
network protocols to implement the services in the network.

As it is shown in Fig. 1, the NRG provides a set of APIs
independent from underlying network.

The NRG product includes Software Development Kit
(SDK) also. The SDK offers software libraries to Java
application developers, which simplify the development of
applications that use NRG capabilities.

Fig. 1 Ericsson Network Resource Gateway

As it is shown in Fig. 2, by using the NRG the developers

no longer need detailed knowledge of telecom network in
order to use its services and with the help of SDK the need for
detailed Common object request broker (CORBA) knowledge
in order to use NRG is removed as well.

Fig. 2 An overview of NRG SDK

The NRG simulator mimics the behavior of an actual NRG
node. It simulates not only the node but also the underlying

1Ivaylo I. Atanasov is with the Faculty of Communications and
Communication Technologies, Technical University of Sofia, 1000
Sofia, Bulgaria, E-mail: iia@tu-sofia.bg

241

Simulation of Next Generation Network Applications

network resources (such as telecommunication network). It uses
a graphical interface that allows a user to define the behavior of
network resources.

The NRG SDK provides API for several services including
framework, multi-party call control, user interaction, user
location user status and messaging. Before an application can
get access to a service, the application needs to authenticate
itself towards the NRG using the framework API.

Most applications follow a similar design involving the
following classes:
• Main – initializes, starts, stops and terminates the

application
• Configuration – provides application with configuration

data
• Graphical user interface (GUI) – provides a graphical user

interface
• Feature – implements application logic
• YY_processors – use service managers to send requests to

the NRG and to receive callback responses.
A feature (application) can have multiple processors.
In the next section an example of application that uses SDK

APIs is considered.

III. CASE STUDY

Let us consider a "Local entertainments" application that
provides information about places of entertainment in a city.
When a user dials the number of "Local entertainments"
service, the application locates her position and asks the user
about requested information for example, restaurants, discos or
pubs. After the user enters her choice, the message is played
containing information about the places of entertainments in the
vicinity. The information about local places of entertainment is
retrieved from a database.

The application uses the following classes available in NRG
SDK:
• MPCCProcessor – a multi-party call control processor that

uses service manager IpMPCCManager
• LocationProcessor – a processor used to determine the user

position
• UIProcessor – a processor for user interaction that uses

service manager IpUIManager
• IpMPCCManager – an interface for receiving results and

notifications from IpMPCC interface
• IpUIManager – an interface for receiving results and

notifications from IpUICall interface
• IpMPCC interface offering methods for multi-party call

handling
• IpUserLocation interface offering methods for user location
• IpUICall interface offering methods for user interaction.

Further for the aim of the application two more classes are
developed:
• DBProcessor – a database processor
• IpDataBase interface offering methods for database access.

The sequence of actions performed during application
execution is shown in Fig. 3.
1 After the user dials the service number, IpMPCCManager

notifies MPCCProcessor about the event.

2 The event is forwarded to the application.
3 The application requests user location.
4 The LocationProcessor sends a request for positioning to

the user location service.
5 The user location service provides requested information.
6 The information about user location is forwarded to the

application.
7 The application requests from the database identifications

of the voice messages containing information about places
of entertainment. The user coordinates are sent as
parameter.

8 The DBProcessor calls DB_retrieve method to extract the
requested data.

9 The result of database query is forwarded to the
application. The result contains message IDs for places of
entertainment.

10 The application starts dialogue with the user.
11 User interaction session is created.
12 The application requests from the UIProcessor to prompt

the user about the requested entertainment type by
entering digit.

13 UIProcessor requests from the user interaction service to
prompt and collect information.

14 The user’s choice is sent to the application.
15 The application sends to the UIProcessor the identification

of the message to be sent.
16 UIProcessor requests from the user interaction service to

play the message.
17 When the message ends this is reported to the

UIProcessor.
18 The application requests to release user interaction

session.
19 The UIProcessor frees the user interaction service.
20 The application deallocates the call-related resources.
21 The multi-party call control service is released.

IV. SLPL DESCRIPTION OF APPLICATION LOGIC

The SLPL application logic description consists of
definition and executive parts. In the definition part data types
and methods are defined, and variables are declared.

The SLPL supports all data types defined in OSA
specifications. Fig. 4 shows the definition of data type that
represents the result returned by the database which contains
the ID of the menu to be played and message IDs of the
entertainment places in the vicinity.

Fig.5 shows variables used in the application script.
The application methods are also defined. When the user

dials the "Local entertainments" service number the
application is notified. The method "handleCall" handles
incoming calls to the service, the method "locationReceived"
is used to receive the geographical coordinates, and the
method "locationTranslated" is used to get the database
response in form of messages IDs corresponding to the
geographical coordinates.

242

Ivaylo I. Atanasov

Fig. 3 Sequence diagram for "Local entertainments" applicationVariables of the types defined are declared.

Fig. 4 An example of SLPL definition of structure type

Fig. 5 An example of SLPL variable declaration

Fig.6 shows the definition of the method "handleCall" and
the method "locationTranslated".

The executive part of the service logic script is built of
statements. To request a service from the network-side of
interface, the application logic has to invoke its methods. On
method invocation its interface is specified and actual value of
its argument is given. To allow synchronous communications
the application has to wait for the result of network services.
By invocation of application’s methods, the network-side
interfaces return the results of the requested service. "Case-
statement" is used for multiple choices.

Fig. 6 An example of SLPL method definition

First the application waits for call notifications. On call
notification, the method "locationRequest" is invoked to
receive user location. The application waits for user location
data. On receiving user location, the method "translation-
Request" is invoked to query database about message IDs for
entertainments in the vicinity. The application waits for
database response. To start interaction with the user the

<types>
 <structure name="PlaceDescription">
 <element name="menu" type="integer"/>
 <element name="Restaurants" type="integer"/>
 <element name="Discos" type="integer"/>
 <element name="Pubs" type="integer"/>

 </structure>
</types>

 : Feature : MPCC-
Processor

 : UI-
Processor

 : Ip(App)-
MPCCManager

 : Location-
Processor

 : Ip(App)-
UIManager

 : Ip-
UserLocation

 : Ip(App)-
UICall

 : Ip(App)-
MPCCCall

reportNotification()

extendedLocationReportReq()

extendedLocationReportRes()

start() createUICall()

say() sendInfoReq()

sendInfoRes()
stop()

release()
deassign()

deassignCall()

handleCall()

requestLocation()

locationReceived()

(1)
(2)

(3)
(4)

(5)(6)

(10)
(11)

(12) (13)

(17)
(18)

(19)
(20)

(21)

 : DB-
Processor

:IpDatabase

DBretrieve()translationRequest()

locationTranslation() (8)
(9)

(7)

askDigit() sendInfoAndCollectReq()

sendInfoAndCollectRes/Err()
(14)

(15)
 (16)

<method name="handleCall">
 <arguments>
 <argument name="aCall"

type="TpMultiPartyCallIdentifier"/>
 <argument name="aLeg" type="TpCallLegIdentifier"/>
 <argument name="anOriginatingAddress"

type="TpAddress"/>
 </arguments>
 <returns/>
 <body>
 <set refid="theCall" valref="aCall"/>
 <set refid="theLeg" valref="aLeg"/>
 <set refid="theOrigAddress"

valref="anOriginatingAddress"/>
 </body>
</method>
<method name="locationTranslated">
 <arguments>
 <argument name="PlaceIDs" type="PlaceDescription"/>
 </arguments>
 <returns/>
 <body>
 <set refid="thePlaces" valref="PlaceIDs"/>
 </body>
</method>

<variables>
 <id name="theLongitude" type="float"/>
 <id name="theLatitude" type="float"/>
 <id name="thePlacesID" type="integer"/>

<id name="theUICall" type="TpUICallIdentifier"/>
 <id name="thePlaces" type="PlaceDescription"/>

<id name="digit" type="integer"/>
<id name="menuID" type="integer"/>

</variables>

243

Simulation of Next Generation Network Applications

method "start" is invoked. The method "askDigit" is invoked to
prompt the user about her choice. The method "say" is
invoked to play the message.

Fig. 7 shows the skeleton of the executive part of the script.

Fig. 7 Skeleton of executive part of SLPL script

V. SIMULATION OF APPLICATION LOGIC

The SLPL interpreter is registered in the Framework of the
NRG. When simulating the application behavior, the
interpreter is in the role of an object of class Feature as
depicted in Fig.3. The SLPL interpreter is supplied with the
SLPL description of "Local entertainments" application.

When the "Local entertainments" application is started, the
SLPL interpreter verifies the syntactical correctness of the

description, generates an abstract syntax tree and makes the
respective mappings of the abstract syntax tree onto the
semantics i.e. calls corresponding Java methods. The calls of
the interpreter are of methods exposed by the Ericsson NRG
simulator.

In runtime on request of the user of the "Local
entertainments" application, the current location is obtained
and displayed in a map. When dialing the service number, an
announcement is played asking for entering digit. After the
user enters a digit, a message with requested information is
played.

Fig. 8 shows a screenshot of service simulation

Fig. 8 A screenshot of "Local entertainments" application simulation

VI. CONCLUSION

In this paper an example of Parlay/OSA application is
considered. The application logic is described using a new
markup language SLPL. The SLPL functional applicability is
verified by simulation.

REFERENCES

[1] Bakker, J. Tweedie, D. and M. Umnehopa, “Evolving service
Creation; New developments in Network Intelligence”,
http://www.argreenhouse.com/papers/jlbakker/Bakker-
telenor.pdf

[2] Bakker J-L, R. Jain, “Next Generation Service Creation Using
XML Scripting Languages”, http://www.argreenhouse.com/pa-
pers/jlbakker/bakker-icc2002.pdf

[3] Atanasov I., E. Pencheva, “A Mark-up Approach to Add Value”,
IJIT Enformatika, vol.3, Number 4, pp 267-276

[4] Ericsson Network Resource Gateway SDK (version R5A02)
http://www.ericsson.com/mobilityworld/sub/open/technologies/p
arlay/tools/parlay_sdk

<execute>
 <wait/>
 <!—invoke method LocationProcessor.locationRequest -->
 <wait/><! – wait for user location data -->
 <!—invoke method "DBProcessor.translationRequest" -->
 <wait/> <! -- the DB result is received in variable thePlaces -->
 <set refid="theUICall">
 <invoke>
 <method name="itsUIProcessor.start">
 <arguments>
 <argument refid="theCall"/>
 </arguments>
 </method>
 </invoke>
 </set>
 <set refid="menuID" valref="thePlaces">
 <value><element name=”menu”/></value>
 </set>
 <set refid="digit">
 <invoke>
 <method name="itsUIProcessor.askDigit">
 <arguments>
 <argument name="aMsgID" refid="menuID"/>
 </arguments>
 </method>
 </invoke>
 </set>
 <case refid="digit">
 <on val="1">
 <set refid=”thePlaceID" valref="thePlaces">
 <value><element name="Restaurants"/></value>
 </set>
 </on>
 <on val="2">
 <set refid="thePlaceID" valref="thePlaces">
 <value><element name="Discos"/></value>
 </set>
 </on>
 <on val="3">
 <set refid="thePlaceID" valref="thePlaces">
 <value><element name="Pubs"/></value>
 </set>
 </on>
 </case>
 <!-- invoke method itsUIProcessor.say -->
 <!-- invoke method itsMPCCProcessor.deassign -->
</execute>

244

