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Abstract – This paper presents a hybrid population based 
evolutionary programming method, designed to solve single 
objective convex integer optimization problems. The proposed 
method combines some ideas from scatter search and genetic 
algorithms, as well from the so-called ant systems and particle 
swarm optimization. The aim of the method is to explore in an 
efficient manner the whole feasible convex domain and to find 
out the global optimum of a multimodal objective function. 
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I. INTRODUCTION 
The integer programming problem considered in this study 

can be stated in the following form:  
       Min  F(x)               (1) 

subject to:   gi(x) ≤ 0;    i = 1,…,m;           (2) 
       lj ≤ xj ≤ uj;    j = 1,…,n;           (3) 
       x ∈ Zn,            (4) 

where x is an n-dimensional vector of variables xj, j = 1,…,n; 
which accept discrete values only. By lj and uj are denoted the 
bounds (lower and upper) of xj, and F(x) is the multimodal 
objective function. There is no necessary F(x) to posses 
accessible to calculation derivatives in an explicit analytical 
form. The functions gi(x), i = 1,…,m; are  convex nonlinear 
functions and m is the number of nonlinear constraints (2).  

The convex integer problems (see [6, 16]) belong to the 
class of NP-hard optimization problems. There does not exist 
an exact algorithm, which can solve these problems in time, 
depending polynomially on the problem input data length or 
on the problem size. For this reason many efficient 
approximate evolutionary algorithms and metaheuristic 
methods have been created to find out the global optimum of 
such complex optimization problems. The most successful 
and efficient methods usually hybridize two or more 
metaheuristics.  

In this study is proposed a new hybrid method, combining 
different ideas of such evolutionary techniques. It is organized 
to manage the system of constraints preserving the feasibility 
of the new obtained solutions. This is very important, as 
shown in [18]. The paper is organized as follows: Some 
common features of the population based methods are 
considered in Section II. The new hybrid population based 
method is described in Section III. An illustrative example of 
this new method is given in Section IV. Some conclusions are 
drawn in Section V.  

II. COMMON FEATURES OF POPULATION BASED 
METHODS 

The name „Adaptive Memory Programming” was proposed 
by Fred Glover in connection with the metaheuristic Tabu 
Search (TS) (see [10]). Many metaheuristics (i. e. methods 
designed to obtain a global optimum) can be classified as  
“adaptive memory methods” (see [19]) or “population based 
methods” (see [12]). The most familiar and powerful among 
them are Genetic Algorithms (GA) (see [11, 13]), Scatter 
Search (SS) (see [7, 9]),  Tabu Search (TS) (see [8, 10]), Ant 
Systems (AS) (see [1, 2, 3]) and Particle Swarm Optimization 
(PSO) (see [5, 14, 15]).  

The above mentioned metaheuristics possess the 
following common features (see [19]): 

• They memorize solutions (or characteristics of 
solutions) in a population of individuals. Each 
individual is associated with a feasible solution of the 
problem at hand. 
• They include a generating solutions search 
procedure, which uses the information stored in the 
memory. 
• They apply some kind of local search method (a 
greedy improvement method, an elementary tabu 
search or simulated annealing) to improve the obtained 
solutions. 

There are some shortcomings in GA. For example the 
mutation has unexpected results on the objective function 
value of an individual, i. e. it does not necessarily improve it 
(see [12]). Another crucial moment is the sufficient diversity 
of the population, i. e. the availability of diverse enough 
genetic material, which permits the exploration of the whole 
feasible domain and which would not restrict the search in a 
near part of the feasible domain around a local minimum (see 
[17]). Also GA are not designed for precisely locating the 
optimal solution(s) and the combination of genetic approach 
and of some form of local search is advisable in general, 
because it could improve the efficacy of GA (see [17, 19]). 

The creation of successful global search methods is 
connected very often with the combination of two or more 
metaheuristics in hybrid methods. For example GA are 
combined with Tabu Search methods, or with a faster local 
search procedure, AS – with local search techniques  (see 
[19]), GA – with clustering procedure (see[4]), SS – with TS 
or SS – with GA (see [9]). 

All population based methods alternate during the search 
periods of self adaptation (the search process is intensified in 
some region of the search space) with periods of co-operation 
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(information collective gathered during the search process is 
used to direct further the search). The periods of self 
adaptation correspond to execution of mutation, improvement 
or local search procedure, and the periods of co-operation are 
connected with the selection, trace updating or generation of 
trial points. The major difficulty with the creation of global 
search methods is to overcome the premature convergence 
towards local optima. To obtain the global optimum of the 
problem at hand a diversification phases of the search process 
are necessary, so that new areas of feasible domain, that are 
remained still unexplored, can be investigated. 

III. THE NEW SYSTEMATICALLY DIVERSIFIED 
SEARCH METHOD SDS 

Considering the search process of a global optimum there is 
no sense to direct the search in the region of the best found so 
far (local optimal or near optimal) solution, because in the 
most cases it will not coincide with the global optimal 
solution. For this reason information sharing as in AS or in 
PSO will be necessary only after the whole feasible domain 
has been roughly explored. The exploration of the whole 
feasible domain means that there is a guaranteed 
systematically diversification of the search process. The basic 
idea of the proposed hybrid SDS (systematically diversified 
search) is to divide the feasible domain in sub-regions (cones 
having a common vertex) and to explore each of them 
applying systematically diversification of the search. Around 
the best found solution for each sub-region, a simple local 
search procedure is performed. Then the obtained best 
solutions from each sub-region form a final population, i. e. 
the information gathered during the search so far is shared like 
in AS or PSO. By means of this final population a few scatter 
search iterations are performed to obtain the global optimal 
solution. At the end a precise local search procedure is used in 
the neighborhood of the best obtained solution in order to 
locate precisely the global optimum. 

Let the feasible domain be denoted by X. The method SDS 
starts from the Tchebicheff center of the feasible domain. The 
Tchebicheff center xtch ∈ X is the point located at the maximal 
Euclidean distance from the constraint surfaces. We assume 
that the Tchebicheff center is obtained by means of a method 
for solving convex problems with continuous variables. Then 
xtch is rounded to the nearest integer point itch. The “pseudo-
code” form of the SDS method is presented below: 
Hybrid method SDS: 
 Round off the components of the Tchebicheff center  xtch 
rounded to their nearest integer values and use them to obtain 
the starting integer point itch. 
 Generate a regular simplex with n+1 vertices, using itch as 
one vertex. Generate the other  vertices on the base of the 
elementary geometry in the following manner: 
             ⎛  itch + ϕ1  if j≠i 
  v(i)

j =  ⎨     (5) 
             ⎝  itch + ϕ2 if j=i 
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 Let itch be denoted as v(0). Round off each v(j), j = 1,…,n; 
to its nearest integer point. There are (n+1)combinations of n 
vertices, correspondingly for each facet of the simplex. The 
rays starting at the weight center of all simplex vertices cs and 
passing through the vertices belonging to each facet determine 
K(i) cones, i = 1,…, n+1; in the feasible domain.  
 Calculate the weight center of the simplex:  
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Round off each cs to its nearest integer point. 
 FOR i = 1,n+1; DO 
  Explore the cone K(i) as follows: 
  Create a population P(i) of (n+1) points, including the 
simplex vertices of the current simplex facet and their weight 
center cv, where  

   cv = 
n

v
i

K
i

v
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∈ )()(

)(

   (9) 

Round off each cv to its nearest integer point. 
  Calculate the mean fitness value FV of the 
population P(i). 
  Let: xold(j) = v(j), j = 1,…, n; and xold(0) = cv. 
  Calculate p(j) =  γ(xold(j) –  cs), j = 1,…, n; and  p(0) = 
γ(cv–cs), where γ is a scale multiplier, tuned  according to the 
concrete problem. 
  ITERATION 
  Calculate the points xnew(j) = xold(j) + p(j),  j= 0,…, n; 
Round off each xnew(j) to its nearest integer point. In case 
there is a violated constraint from the system (2)-(3) reduce 
the corresponding p(j) as follows: 
  - If a constraint of type xk +a = 0 is violated, where a 
can have positive or negative value, then the corresponding 
component pk of p(j) ,  is used to reduce p(j): 

   p(j) =   |
k

k
p

pa − | p(j)   (10) 

  - If a constraint of type gi(x) ≤ 0 is violated then    p(j) 
= 0.8 p(j) . If it is necessary repeat this reduction until the 
rounded off integer xnew(j) becomes feasible. 
  - If there are more than one constraints, violated by 
p(j) , then chose the most reduced vector p(j), so that the 
rounded off integer xnew(j) becomes feasible. 
  Evaluate the objective function values F(xnew(j)),  j = 
0,…, n; In case F(xnew(j)) < FV then replace the point of P 
having worst (greatest) fitness value by the point xnew(j). 
  Calculate the mean fitness value FV of the updated 
population P(i). 
  Update xold(j) = xnew(j), j = 1,…, n; In case some p(j) 
has been reduced at the current iteration  then  

  xold(0) = 
n

xold
n

j

j∑
=1

)(

;  Round off  xold(0) to its nearest  
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  integer point; 
  else xold(0) = xnew(0). 
  ENDofITERATION 
  Repeat the ITERATION until it is not possible to 
generate any new feasible points by means of  p(j),  j = 0,…, n; 
 At the obtained end points along the cone rays try to 
make a step with p(0) = xold(0) – cs. 
 Around the best obtained point of P perform a simple 
local search by means of vectors d, having only one nonzero 
component: dj =±1. 
 ENDFOR 
 Create a final population FP of (n+1) points, including 
the best found points from the populations P(i), i = 1,n+1;. 
Calculate the mean fitness value FFV of the population FP. 
 For each two pints x(1) and x(2) of FP perform scatter 
search as follows:  
 xnew = x(1) + w(x(2)– x(1)), where  w = ± 1/||x(2)– x(1))||. 
 In case the obtained points xnew have better objective 
function values than FFV, replace the worst points in FP by 
them. 
 
 

 Around  the  best   obtained  point  of   FP  perform  more 
precise local search by means of vectors df, having two 
nonzero components : dfj = ±1. 
 END 

 Performing consecutive steps from the weight center cs 
towards the boundaries of the feasible domain, no matter are 
they improving the objective function value or not, the search 
process in the SDS method is further diversified in different 
way, besides the separately exploration of each cone, 
generated in the feasible region. 

IV. ILLUSTRATIVE EXAMPLE  

Let us consider the following example. The objective 
function F(x) is given in a tabular form (see Table I), x is two-
dimensional and there are simple constraints on each variable:  

0 ≤ x1 ≤ 10; 
0 ≤  x2  ≤ 8; 

 

   TABLE  I.    VALUES OF THE OBJECTIVE FUNCTION F(x) 
        x1  
x2 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

0 11 11 10 11 11 10 10 9 7 6 8 
1 7 8 10 11 12 13 12 10 7 3 7 
2 6 4 7 10 15 14 13 11 9 7 9 
3 7 8 9 10 13 12 14 13 10 9 10 
4 8 9 12 11 13 12 17 16 11 12 13 
5 16 14 12 11 12 11 10 14 12 13 14 
6 15 14 12 12 12 10 8 9 8 11 15 
7 13 12 11 10 11 9 8 4 6 10 13 
8 10 12 11 11 10 9 7 0 7 9 11 

 
 
Starting from the Tchebicheff center  itch = (5,5) the simplex 

with vertices (5,4), (6,7) and (8,5) is generated. The weight 
center of the simplex is  cs = (6,5). 

The population P(1) includes the points (5,4), (8,5) and the 
middle point of the segment, determined by them – the point 
cv = (7,5). The obtained mean fitness value FV = 12.67. For 
this problem γ = 3 is chosen, so that p(0)  = (3,0), p(1)  = (-3,-3), 
p(2) = (6,0); The last vector is reduced to p(2)  = (3,0). Only two 
new points are obtained: (2,1) and (10,5). The point (2,1) 
enters in P, replacing the point (7,5). The new mean fitness 
value FV = 11.33. A reduction of p(2) is made, so that the point 
xold(0) = (6,3) with objective function value F =14. The 
obtained point xnew(0).= (9,3) with F = 9. It enters in P 
replacing the point (5,4). The new mean fitness value FV = 
10.33. Reducing p(1) to p(1)  = (-1,-1) the point (1,0) is 
obtained. It has objective function value 11 and does not enter 
in P. The point xold(0) = (6,3). At the point (10,5) the step with 
p(0) = xold(0) – cs = (6,3)-(6,5) = (0,-2) leads in point (10,3) 
with F=10. This point replaces the point (8,5) in P and FV = 
9.67. A simple local search is performed around the point 
(9,3). The local optimal solution (9,1) is obtained with F=3. 

 

The population P(2) includes the points (8,5), (6,7) and the 
middle point of the segment, determined by them – the point 
cv = (7,6). The obtained mean fitness value FV = 9.67. The 
search vectors are: p(0)  = (3,3), p(1)  = (6,0), p(2) = (0,6); All 
the three vectors p(0), p(1) and p(2) are reduced and the obtained 
points are (9,8) with F=9, (10,5) with F=14 and (6,8) with 
F=7. Point (9,8) replaces the point (8,5) in P, and point (6,8) 
replaces the point (7,6). The new mean fitness value FV = 8. 
The calculated point xold(0) = (8,7) with F=6. It replaces the 
point (9,8). The new mean fitness value FV = 7. The vector 
p(0) is reduced to p(0)  = (1,1) and the new point (9,8) is 
obtained, which has been already explored. A simple local 
search is performed around the point (8,7). The local optimal 
solution (7,8) is obtained with F=0. 

The population P(3) includes the points (5,4), (6,7) and the 
middle point of the segment, determined by them – the point 
cv = (6,6). The obtained mean fitness value FV= 9.33. The 
search vectors are: p(0)  = (0,3), p(1)  = (-3,-3), p(2) = (0,6); Both 
vectors p(0) and p(2) are reduced and the points (6,8), (2,1)  and 
(6,8) are obtained. The point (6,8) has F=7 and the point (2,1) 
has F=10. Point (6,8) enters in P, replacing the point (5,4) and 
the new mean fitness value FV= 7.67. The calculated point 
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xold(0) = (4,5) with F=12. It does not enter in P. The vector 
p(1) is reduced to p(1)  = (-1,-1) and the vector p(2) is reduced to 
p(2)  = (0,0). The new points (1,0) with F=11 and (4,8) with 
F=10 are obtained. They do not enter in P. At the point (1,0) 
the step with p(0) = xold(0) – cs = (4,8)-(6,5) = (-2,3) leads after 
reducing p(0) in point (0,2) with F=6. The last found point 
replaces point (6,7) in P and the new FV= 7. A simple local 
search is performed around the point (0,2). The local optimal 
solution (1,2) is obtained with F=4. 

The points (9,1), (7,8) and (1,2) form the final population 
FP. The mean fitness value FFV = 2.33. After the scatter and 
the precise local search no better feasible solution is obtained. 
The found global optimal solution is x = (7,8) with  F=0. 

V. CONCLUSIONS 

The presented new hybrid method SDS has the following 
good features and advantages: 

• During the exploration of each sub-region the SDS 
method systematically diversifies the search process, 
avoiding in this manner the trap of local minima. 

• The SDS method performs search in all defined sub-
regions of the search space, so that the whole feasible 
domain is roughly explored. 

• The formed final population contains diverse enough 
individuals, so that it is expected that the final search 
phase would lead to the global optimal solution. 

• The applying of simple local search technique at the 
end of sub-regions exploration and of more precise 
local search at the end of the search process guarantees 
the good quality of the obtained final best solution. 

• The SDS method can be efficient in comparison to 
other global search methods, because it explores only a 
small percent of all integer points in the feasible 
domain. This percent decreases with the increase of n 
and with growth of the feasible area. 

• The populations used in SDS method have relatively 
small size, so that no great memory will be necessary 
for its implementation. 

• The SDS method guarantees the feasibility of the 
obtained solutions. 

• A great part of the integer points located on the rays 
forming each cone, which have been explored during 
the search in the corresponding sub-region, can be used 
during the exploration of the next sub-region. This may 
be used for creation of efficient program realizations of 
SDS method. 

The SDS method will be tested on a set of test examples 
and may be further refined. 
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