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Abstract – Low – Density Parity Check codes were invented in 
1960 by R. Gallager. They were largely ignored until the 
discovery of turbo codes in 1993. Since then, LDPC codes have 
experienced a renaissance and are now one of the most intensely 
studied areas in coding. In this article we review the basic 
structure of LDPC codes and the iterative algorithms that are 
used to decode them. 
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I. INTRODUCTION 

Low-Density parity-check (LDPC) codes, discovered by 
Gallager in 1962 [1], were rediscovered and shown to form a 
class of Shannon-limit-approaching codes in the late 1990 [2, 
3]. These codes, decoded with iterative decoding based on 
belief propagation, such as the sum-product algorithm (SPA) 
[3, 4, 7], achieve amazingly good error performance. Ever 
since their rediscovery, design, construction, decoding, 
efficient encoding, performance analysis, and applications of 
these codes in digital communication and storage systems 
have become the focal points of research. Various methods for 
constructing LDPC codes have been proposed. Based on the 
methods of construction, LDPC codes can be classified into 
two general categories: 1) random (or random-like) codes 
generated by computer search based on certain design 
guidelines and required structural properties of their Tanner 
graphs 6], such as the girth and degree distributions [3, 5]; and 
2) structured codes constructed based on algebraic and 
combinatorial methods, such as those given in [8, 9], and 
many others. 

II. GRAPHICAL REPRESENTATION OF LDPC CODES 

А linear block code C of rate R = k/n can be defined in 
terms of a (n−k)×n parity-check matrix H = [h1, h2,…,hn]. 
Each entry hij of H is an element of a finite field GF(p). We 
will only consider binary codes in our work, so each entry is 
either a ‘0’ or a ‘1’ and all operations are modulo 2. The code 
C is the set of all vectors x that lie in the (right) nullspace of 
H, that is, Hx=0. Given a parity-check matrix H, we can find a 
corresponding k×n generator matrix G such that GHT=0. The 
generator matrix can be used as an encoder according to xT = 
uTG. 

In its simplest guise, an LDPC code is a linear block code 
with a parity-check matrix that is “sparse”; that is, it has a 
small number of nonzero entries. Gallager proposed 
constructing LDPC codes by randomly placing 1’s and 0’s in 
a m×n parity-check matrix H subject to the constraint that 
each row of H had the same number dc of 1’s and each 
column of H had the same number dv of 1’s.[9] On Fig. 1 is 
shown the m=15×n=20 parity-check matrix with dv=3 and 
dc=4 and defines an LDPC code with length n=20. Codes of 
this form are referred to as regular (dv, dc) LDPC codes of 
length n. In a (dv, dc) LDPC code each information bit is 
involved in dv parity checks and each parity-check bit 
involves dc information bits. The fraction of 1’s in the parity-

check matrix of a regular LDPC code is 
n
d

mn
md cc = , which 

approaches zero as the block length gets large and leads to the 
name low-density parity-check codes. 
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Fig.1 Gallager – type low density parity check H1 

 
We must determine the rate of the code defined by H1. 

Since the parity check matrix is randomly constructed, there is 
no guarantee that the rows are linearly independent and the 
matrix is full rank. Indeed, the rank of H1 is 13<m=15, and 
this parity-check matrix actually defines a code with rate 
R=7/20. In general, such randomly constructed parity-check 
matrices will not be full rank and m≠n−k. We could eliminate 
linearly dependent rows to find a (n−k)×n parity-check matrix, 
but the new matrix would no longer be regular. For LDPC 
codes with large n, it is convenient to retain the original 
parity-check matrix even if it is not full rank, and it is also 

convenient to refer to 
c

v

d
d

n
m

−=− 11  as the designed rate of 

the code. 
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Having defined a (dv, dc) regular LDPC code, we are now 
left to construct a particular instance of a code. To do this 
requires the choice of dv, dc, n, and k, which are constrained 
by the relationship that, for a regular code, mdc = ndv and that 
dv must be less than dc in order to have a rate less than R=1. 
Assuming that the block length n and the code rate are 
determined by the application, it remains to determine 
appropriate values for dv and dc. In [1] Gallager showed that 
the minimum distance of a typical regular LDPC code 
increased linearly with n, provided that dv≥3. Therefore, most 
regular LDPC codes are constructed with dv and dc on the 
order of 3 or 4, subject to the above constraints. For large 
block lengths, the random placement of 1’s in H such that 
each row has exactly dc 1’s and each column has exactly dv 
1’s requires some effort, and systematic methods for doing 
this have been developed [3]. 

Tanner graph 

An important advance in the theory of LDPC codes 
occurred when Tanner [6] used bipartite graphs to provide a 
graphical representation of the parity-check matrix. The 
bipartite graph is a graph in which the nodes may be 
partitioned into two subsets such that there are no edges 
connecting nodes within a subset. In the context of LDPC 
codes, the two subsets of nodes are referred to as variable 
nodes and check nodes. There is one variable node for each of 
the n bits in the code, and there is one check node for each of 
the m rows of H. An edge exists between the ith variable node 
and the jth check node if and only if hij =1. The bipartite graph 
corresponding to the parity-check matrix H1 is shown in Fig. 
9. In a graph, the number of edges incident upon a node is 
called the degree of the node. Thus, the bipartite graph of a 
(dv, dc) LDPC code contains n variable nodes of degree dv and 
m check nodes of degree dc. 

It is clear that the parity-check matrix can be deduced from 
the bipartite graph, and thus the bipartite graph can be used to 
define the code C. We can therefore start talking about codes 
as defined by a set of variable nodes, a set of check nodes, and 
set of edges. This is the current approach to addressing LDPC 
codes. Note that the pair (dv, dc), together with the code length 
n, specifies an ensemble of codes, rather than any particular 
code. This ensemble is denoted by Cn(dv, dc). Once the 
degrees of the nodes are chosen, we are still free to choose 
which particular connections are made in the graph. 

 

 
Fig.2 Bipartite graph for a (3,4) regular LDPC code with parity check 

matrix H1 

 

A socket refers to a point on a node to which an edge may 
be attached. A variable node has dv sockets, meaning dv edges 
may be attached to that node. There will be a total of ndv 
sockets on variable nodes and mdc sockets on parity-check 
nodes. Clearly the number of variable-node sockets must be 
equal to the number of check-node sockets and a particular 
pattern of edge connections can be described as a permutation 
π from variable-node sockets to check-node sockets. An 
individual edge is specified by the pair (i, π(i)), which 
indicates that the ith variable node socket is connected to the 
π(i)th check-node socket. 

Selecting a random code from the ensemble Cn(dv, dc) 
therefore amounts to randomly selecting a permutation on ndv 
elements. Many permutations will result in a graph that 
contains parallel edges—that is, in which more than one edge 
join the same variable and parity-check nodes. Note that in the 
parity-check matrix, an even number of parallel edges will 
cancel. If they are deleted from the graph, then the degrees of 
some nodes will be changed and the code will cease to be a 
regular LDPC code. If they are not deleted, their presence 
renders the iterative decoding algorithms ineffective. We must 
therefore make the restriction that permutations leading to 
parallel edges are disallowed. 

An irregular LDPC code cannot be defined in terms of the 
degree parameters dv and dc. We must instead use degree 
distributions to describe the variety of node degrees in the 
graph. A degree distribution γ(x) is a polynomial: 

 ( ) ∑ −=
i

i
i xx 1γγ  (1) 

such that γ(1)=1. The coefficients γi denote the fraction of 
edges in the graph which are connected to a node of degree i. 
We will also use the notation ∫γ  to denote the inverse 

average node degree, given by 

 ( )∫ ∑∫ ==
i

i

i
dxx γγγ

1

0

 (2) 

Let d be the average node degree corresponding to the 

degree distribution γ. To show that ∫ =
d
1γ , let n be the total 

number of nodes, and let ni be the number of nodes of degree 
i. The total number of edges in the graph is d·n. Because γi is 
the fraction of edges connected to a node of degree i, we 

conclude that 
nd

n
i

ii

⋅
=

γ
. Completing the sum of Eq. (2), we 

arrive at ∫ =
d
1γ . 

The code length n and two degree distributions - λ(x) and 
ρ(x) for the variable and check nodes, respectively – are 
sufficient to define an ensemble Cn(λ, ρ) of irregular LDPC 
codes. A graph G from this ensemble will have n variable 
nodes. The number of check nodes m, is given by 

 
∫
∫=
λ

ρ
nm  (3) 

Check nodes

Variable nodes
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The number of degree-i variable nodes in G is 

 
∫

=
λ

λλ
i

nn i
i

~  (4) 

where iλ
~

 denotes the fraction of variable nodes of degree i. 
Similarly, the number of degree-i check nodes in G is 

 
∫

=
ρ

ρρ
i

mm i
i

~  (5) 

where iρ
~  denotes the fraction of check nodes of degree i. 

And the design rate of the code represented by G is 

 
n

mnr −
=  (6) 

We can enumerate the variable-node and check-node 
sockets of the irregular code graph. Selection of a code from 
the ensemble is a selection of a permutation on NE elements, 
where NE is the number of edges in the graph, given by 

 
∫

=
λ
nNE  (7) 

III. MESSAGE PASSING DECODING 
ALGORITHMS 

It was stated in the introduction that a principal advantage 
of low-density parity check codes is that they can be decoded 
using an iterative decoding algorithm whose complexity 
grows linearly with the block length of the code. Belief 
propagation is one instance of a broad class of message 
passing algorithms on graphs as discussed in [7, 10]. Similar 
decoding algorithms for the binary erasure channel and the 
binary symmetric channel are discussed in [11]. All message 
passing algorithms must, however, respect the following rule, 
which was introduced with turbo codes. 

Rule (Extrinsic Information Principle) A message sent from 
a node n along an edge e cannot depend on any message 
previously received on edge e. 

Before stating the algorithm, it is necessary to formulate the 
decoding problem. An LDPC code is constructed in terms of 
its parity-check matrix H which is used for decoding. To 
encode the information sequence u, it is necessary to derive a 
generator matrix G such that GHT=0. Finding a suitable G is 
greatly simplified if we first convert H into the equivalent 
systematic parity-check matrix HS = [A|In−k]. The systematic 
generator matrix is now given by 
 [ ]T

ks AIG =  
and the information sequence is encoded as xT=uTGs. It is 
worth noting that encoding by matrix multiplication has 
complexity O(n2) and that, in general, LDPC codes have 
linear decoding complexity, but quadratic encoding 
complexity. 

The codeword x is transmitted across the additive white 
Gaussian noise (AWGN) channel, using BPSK modulation 
resulting in the received sequence r=(2x−1)+n. The optimal 
decoder for the AWGN channel is the maximum a posteriori 
(MAP) decoder that computes the log-likelihood ratio (LLR): 

 ( ) ( )
( )⎟⎟⎠

⎞
⎜
⎜
⎝

⎛

=
=

=Λ
yxP
yxP

x
r

r
r 0

1
log  

and makes a decision by comparing this LLR to the threshold 
zero. The belief propagation on a graph with cycles can 
closely approximate the MAP algorithm, and we can state the 
decoding algorithm for LDPC codes on the AWGN channel 
using these results. 

Let A={−1, +1} denote the message alphabet, let ri ∈R 
denote the received symbol at variable node i, and let Ri ∈Λ  
denote the decision at variable node i. A message from 
variable node i to check node j is represented by Rji ∈→μ , 
and a message from check node j to variable node i is 

Rij ∈→β . Let Cj\i be the set of variable nodes which connect 
to check node j, excluding variable node i. Similarly, let Vi\j be 
the set of check nodes which connect to variable node i, 
excluding check node j. The decoding algorithm is then as 
follows: 

Step 1: Initialize ii r2

2
σ

=Λ  for each variable node. 

(σ2=N0/2). 
Step 2: Variable nodes send μi→j=λi to each check node 

iVj∈ . 
Step 3: Check nodes connected to variable node i send 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Λ= ∏

∈

−
→

ijCl

l
ij

/
2

tanhtanh2 1β  (8) 

Step 4: Variable nodes connected to check nodes j send 
 ∑

∈
→→ =

jiVl
ilji

/

βμ  (9) 

Step 5: When a fixed number of iterations have been 
completed or the estimated code word x̂  satisfies the 
syndrome constraint 0ˆ =xH , stop. Otherwise return to Step 
3. 

The check node’s rule (8) is fairly complex. But for 
quantized messages it is possible to map LLRs to messages in 
such a way that the check-node rule can be implemented with 
some extra combinational logic and an adder. Such decoders 
provide very good performance with only a few bits of 
precision. If we want to keep the complexity even simpler, we 
can use the max-Log approximation, in which we can replace 
the above rule with: 
 { }( ) ( )∏

∈
∈→ Λ≈

ij
ij Cl

llClij sign
/

/

min λβ  (10) 

Some performance loss will result from this approximation, 
but it may be justified by the overall savings in decoder 
complexity. 

IV. SIMULATION RESULT 

We perform simulation on an optimized regular (3,6) LDPC 
code with 128x256 parity check matrix over an additive white 
Gaussian noise channel (AWGN) with binary phase – shift 
keying (BPSK) modulation. In our simulation, we stop 
iteration as soon as a codeword is detected or when a 
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maximum number of iteration is reached. The maximum 
number of iteration is set to 10. 

Fig. 3 shows the frame error rate as a function of the energy 
per bit (Eb) to the spectral noise density (N0) – Eb/N0 and 30 
codewords errors. Fig. 4 shows the bit error rate as a function 
of Eb/N0.  
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Fig.3 Frame error rate (FER) for LDPC codes over the additive white 

Gaussian noise channel 
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Fig.4 Bit error rate (BER) for LDPC codes over the additive white 

Gaussian noise channel 
 

V. CONCLUSION 

Analysis techniques formulated for LDPC codes are generic 
and can be used for other coding schemes based on iterative 
decoding methods. Each LDPC code is characterized by a 
number of fixed parameters that include the following: check 
node degree, variable node degree and blocksize N. These 
parameters are used to determine the nodes in the LDPC 
factor graph and a collection of permissible edges between the 
nodes. Given these parameters, there exists a finite number of 
possible ways in which edges can be connected between 
nodes in a factor graph. By varying the parameters of the 

graphs to increase their girth one can improve the distance 
properties of the code without increasing the number of parity 
checks in which each bit is involved. However the size of the 
graph and hence size of the code, required grows rapidly. 
Some modifications to standard decoding algorithms for 
LDPC codes have also been presented. 

Finally, the goal of this paper was to present the main 
constructive principle of low–density parity check codes, as 
well as a design methodology, that gives good performance 
for many communication systems like latest DVB satellite 
communications standard. 
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