

Construction and Simulation Analysis
of Low-Density Parity-Check Codes

Teodor B. Iliev1

Abstract – Low – Density Parity Check codes were invented in
1960 by R. Gallager. They were largely ignored until the
discovery of turbo codes in 1993. Since then, LDPC codes have
experienced a renaissance and are now one of the most intensely
studied areas in coding. In this article we review the basic
structure of LDPC codes and the iterative algorithms that are
used to decode them.

Keywords – Parity-check matrix, low–density parity check
code

I. INTRODUCTION

Low-Density parity-check (LDPC) codes, discovered by
Gallager in 1962 [1], were rediscovered and shown to form a
class of Shannon-limit-approaching codes in the late 1990 [2,
3]. These codes, decoded with iterative decoding based on
belief propagation, such as the sum-product algorithm (SPA)
[3, 4, 7], achieve amazingly good error performance. Ever
since their rediscovery, design, construction, decoding,
efficient encoding, performance analysis, and applications of
these codes in digital communication and storage systems
have become the focal points of research. Various methods for
constructing LDPC codes have been proposed. Based on the
methods of construction, LDPC codes can be classified into
two general categories: 1) random (or random-like) codes
generated by computer search based on certain design
guidelines and required structural properties of their Tanner
graphs 6], such as the girth and degree distributions [3, 5]; and
2) structured codes constructed based on algebraic and
combinatorial methods, such as those given in [8, 9], and
many others.

II. GRAPHICAL REPRESENTATION OF LDPC CODES

А linear block code C of rate R = k/n can be defined in
terms of a (n−k)×n parity-check matrix H = [h1, h2,…,hn].
Each entry hij of H is an element of a finite field GF(p). We
will only consider binary codes in our work, so each entry is
either a ‘0’ or a ‘1’ and all operations are modulo 2. The code
C is the set of all vectors x that lie in the (right) nullspace of
H, that is, Hx=0. Given a parity-check matrix H, we can find a
corresponding k×n generator matrix G such that GHT=0. The
generator matrix can be used as an encoder according to xT =
uTG.

In its simplest guise, an LDPC code is a linear block code
with a parity-check matrix that is “sparse”; that is, it has a
small number of nonzero entries. Gallager proposed
constructing LDPC codes by randomly placing 1’s and 0’s in
a m×n parity-check matrix H subject to the constraint that
each row of H had the same number dc of 1’s and each
column of H had the same number dv of 1’s.[9] On Fig. 1 is
shown the m=15×n=20 parity-check matrix with dv=3 and
dc=4 and defines an LDPC code with length n=20. Codes of
this form are referred to as regular (dv, dc) LDPC codes of
length n. In a (dv, dc) LDPC code each information bit is
involved in dv parity checks and each parity-check bit
involves dc information bits. The fraction of 1’s in the parity-

check matrix of a regular LDPC code is
n
d

mn
md cc = , which

approaches zero as the block length gets large and leads to the
name low-density parity-check codes.

1
0
0
0
0
1
0
0
0
0
1
0
0
0
0

1
0
0
0
0
0
1
0
0
0
0
1
0
0
0

1
0
0
0
0
0
0
1
0
0
0
0
1
0
0

1
0
0
0
0
0
0
0
1
0
0
0
0
1
0

0
1
0
0
0
1
0
0
0
0
0
0
0
0
1

0
1
0
0
0
0
1
0
0
0
1
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
1
0
0
0

0
1
0
0
0
0
0
0
0
1
0
0
1
0
0

0
0
1
0
0
1
0
0
0
0
0
0
0
1
0

0
0
1
0
0
0
1
0
0
0
0
0
0
0
1

0
0
1
0
0
0
0
0
1
0
0
1
0
0
0

0
0
1
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
1
0
0

0
0
0
1
0
0
0
1
0
0
0
0
0
1
0

0
0
0
1
0
0
0
0
1
0
0
0
0
0
1

0
0
0
1
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
1
0
0
0
0
0
0
1
0

0
0
0
0
1
0
0
1
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
1
0
0

0
0
0
0
1
0
1
0
0
1
0
0
0
0
1

H1=

Fig.1 Gallager – type low density parity check H1

We must determine the rate of the code defined by H1.

Since the parity check matrix is randomly constructed, there is
no guarantee that the rows are linearly independent and the
matrix is full rank. Indeed, the rank of H1 is 13<m=15, and
this parity-check matrix actually defines a code with rate
R=7/20. In general, such randomly constructed parity-check
matrices will not be full rank and m≠n−k. We could eliminate
linearly dependent rows to find a (n−k)×n parity-check matrix,
but the new matrix would no longer be regular. For LDPC
codes with large n, it is convenient to retain the original
parity-check matrix even if it is not full rank, and it is also

convenient to refer to
c

v

d
d

n
m

−=− 11 as the designed rate of

the code.
1Teodor B. Iliev is with the Department of Communication

Technique and Technologies, 8 Studentska Str., 7017 Rousse,
Bulgaria, E-mail: tiliev@ecs.ru.acad.bg

35

Construction and Simulation Analysis of Low-Density Parity-Check Codes

Having defined a (dv, dc) regular LDPC code, we are now
left to construct a particular instance of a code. To do this
requires the choice of dv, dc, n, and k, which are constrained
by the relationship that, for a regular code, mdc = ndv and that
dv must be less than dc in order to have a rate less than R=1.
Assuming that the block length n and the code rate are
determined by the application, it remains to determine
appropriate values for dv and dc. In [1] Gallager showed that
the minimum distance of a typical regular LDPC code
increased linearly with n, provided that dv≥3. Therefore, most
regular LDPC codes are constructed with dv and dc on the
order of 3 or 4, subject to the above constraints. For large
block lengths, the random placement of 1’s in H such that
each row has exactly dc 1’s and each column has exactly dv
1’s requires some effort, and systematic methods for doing
this have been developed [3].

Tanner graph

An important advance in the theory of LDPC codes
occurred when Tanner [6] used bipartite graphs to provide a
graphical representation of the parity-check matrix. The
bipartite graph is a graph in which the nodes may be
partitioned into two subsets such that there are no edges
connecting nodes within a subset. In the context of LDPC
codes, the two subsets of nodes are referred to as variable
nodes and check nodes. There is one variable node for each of
the n bits in the code, and there is one check node for each of
the m rows of H. An edge exists between the ith variable node
and the jth check node if and only if hij =1. The bipartite graph
corresponding to the parity-check matrix H1 is shown in Fig.
9. In a graph, the number of edges incident upon a node is
called the degree of the node. Thus, the bipartite graph of a
(dv, dc) LDPC code contains n variable nodes of degree dv and
m check nodes of degree dc.

It is clear that the parity-check matrix can be deduced from
the bipartite graph, and thus the bipartite graph can be used to
define the code C. We can therefore start talking about codes
as defined by a set of variable nodes, a set of check nodes, and
set of edges. This is the current approach to addressing LDPC
codes. Note that the pair (dv, dc), together with the code length
n, specifies an ensemble of codes, rather than any particular
code. This ensemble is denoted by Cn(dv, dc). Once the
degrees of the nodes are chosen, we are still free to choose
which particular connections are made in the graph.

Fig.2 Bipartite graph for a (3,4) regular LDPC code with parity check

matrix H1

A socket refers to a point on a node to which an edge may
be attached. A variable node has dv sockets, meaning dv edges
may be attached to that node. There will be a total of ndv
sockets on variable nodes and mdc sockets on parity-check
nodes. Clearly the number of variable-node sockets must be
equal to the number of check-node sockets and a particular
pattern of edge connections can be described as a permutation
π from variable-node sockets to check-node sockets. An
individual edge is specified by the pair (i, π(i)), which
indicates that the ith variable node socket is connected to the
π(i)th check-node socket.

Selecting a random code from the ensemble Cn(dv, dc)
therefore amounts to randomly selecting a permutation on ndv
elements. Many permutations will result in a graph that
contains parallel edges—that is, in which more than one edge
join the same variable and parity-check nodes. Note that in the
parity-check matrix, an even number of parallel edges will
cancel. If they are deleted from the graph, then the degrees of
some nodes will be changed and the code will cease to be a
regular LDPC code. If they are not deleted, their presence
renders the iterative decoding algorithms ineffective. We must
therefore make the restriction that permutations leading to
parallel edges are disallowed.

An irregular LDPC code cannot be defined in terms of the
degree parameters dv and dc. We must instead use degree
distributions to describe the variety of node degrees in the
graph. A degree distribution γ(x) is a polynomial:

 () ∑ −=
i

i
i xx 1γγ (1)

such that γ(1)=1. The coefficients γi denote the fraction of
edges in the graph which are connected to a node of degree i.
We will also use the notation ∫γ to denote the inverse

average node degree, given by

 ()∫ ∑∫ ==
i

i

i
dxx γγγ

1

0

 (2)

Let d be the average node degree corresponding to the

degree distribution γ. To show that ∫ =
d
1γ , let n be the total

number of nodes, and let ni be the number of nodes of degree
i. The total number of edges in the graph is d·n. Because γi is
the fraction of edges connected to a node of degree i, we

conclude that
nd

n
i

ii

⋅
=

γ
. Completing the sum of Eq. (2), we

arrive at ∫ =
d
1γ .

The code length n and two degree distributions - λ(x) and
ρ(x) for the variable and check nodes, respectively – are
sufficient to define an ensemble Cn(λ, ρ) of irregular LDPC
codes. A graph G from this ensemble will have n variable
nodes. The number of check nodes m, is given by

∫
∫=
λ

ρ
nm (3)

Check nodes

Variable nodes

36

Teodor B. Iliev

The number of degree-i variable nodes in G is

∫

=
λ

λλ
i

nn i
i

~ (4)

where iλ
~

 denotes the fraction of variable nodes of degree i.
Similarly, the number of degree-i check nodes in G is

∫

=
ρ

ρρ
i

mm i
i

~ (5)

where iρ
~ denotes the fraction of check nodes of degree i.

And the design rate of the code represented by G is

n

mnr −
= (6)

We can enumerate the variable-node and check-node
sockets of the irregular code graph. Selection of a code from
the ensemble is a selection of a permutation on NE elements,
where NE is the number of edges in the graph, given by

∫

=
λ
nNE (7)

III. MESSAGE PASSING DECODING
ALGORITHMS

It was stated in the introduction that a principal advantage
of low-density parity check codes is that they can be decoded
using an iterative decoding algorithm whose complexity
grows linearly with the block length of the code. Belief
propagation is one instance of a broad class of message
passing algorithms on graphs as discussed in [7, 10]. Similar
decoding algorithms for the binary erasure channel and the
binary symmetric channel are discussed in [11]. All message
passing algorithms must, however, respect the following rule,
which was introduced with turbo codes.

Rule (Extrinsic Information Principle) A message sent from
a node n along an edge e cannot depend on any message
previously received on edge e.

Before stating the algorithm, it is necessary to formulate the
decoding problem. An LDPC code is constructed in terms of
its parity-check matrix H which is used for decoding. To
encode the information sequence u, it is necessary to derive a
generator matrix G such that GHT=0. Finding a suitable G is
greatly simplified if we first convert H into the equivalent
systematic parity-check matrix HS = [A|In−k]. The systematic
generator matrix is now given by
 []T

ks AIG =
and the information sequence is encoded as xT=uTGs. It is
worth noting that encoding by matrix multiplication has
complexity O(n2) and that, in general, LDPC codes have
linear decoding complexity, but quadratic encoding
complexity.

The codeword x is transmitted across the additive white
Gaussian noise (AWGN) channel, using BPSK modulation
resulting in the received sequence r=(2x−1)+n. The optimal
decoder for the AWGN channel is the maximum a posteriori
(MAP) decoder that computes the log-likelihood ratio (LLR):

 () ()
()⎟⎟⎠

⎞
⎜
⎜
⎝

⎛

=
=

=Λ
yxP
yxP

x
r

r
r 0

1
log

and makes a decision by comparing this LLR to the threshold
zero. The belief propagation on a graph with cycles can
closely approximate the MAP algorithm, and we can state the
decoding algorithm for LDPC codes on the AWGN channel
using these results.

Let A={−1, +1} denote the message alphabet, let ri ∈R
denote the received symbol at variable node i, and let Ri ∈Λ
denote the decision at variable node i. A message from
variable node i to check node j is represented by Rji ∈→μ ,
and a message from check node j to variable node i is

Rij ∈→β . Let Cj\i be the set of variable nodes which connect
to check node j, excluding variable node i. Similarly, let Vi\j be
the set of check nodes which connect to variable node i,
excluding check node j. The decoding algorithm is then as
follows:

Step 1: Initialize ii r2

2
σ

=Λ for each variable node.

(σ2=N0/2).
Step 2: Variable nodes send μi→j=λi to each check node

iVj∈ .
Step 3: Check nodes connected to variable node i send

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Λ= ∏

∈

−
→

ijCl

l
ij

/
2

tanhtanh2 1β (8)

Step 4: Variable nodes connected to check nodes j send
 ∑

∈
→→ =

jiVl
ilji

/

βμ (9)

Step 5: When a fixed number of iterations have been
completed or the estimated code word x̂ satisfies the
syndrome constraint 0ˆ =xH , stop. Otherwise return to Step
3.

The check node’s rule (8) is fairly complex. But for
quantized messages it is possible to map LLRs to messages in
such a way that the check-node rule can be implemented with
some extra combinational logic and an adder. Such decoders
provide very good performance with only a few bits of
precision. If we want to keep the complexity even simpler, we
can use the max-Log approximation, in which we can replace
the above rule with:
 { }() ()∏

∈
∈→ Λ≈

ij
ij Cl

llClij sign
/

/

min λβ (10)

Some performance loss will result from this approximation,
but it may be justified by the overall savings in decoder
complexity.

IV. SIMULATION RESULT

We perform simulation on an optimized regular (3,6) LDPC
code with 128x256 parity check matrix over an additive white
Gaussian noise channel (AWGN) with binary phase – shift
keying (BPSK) modulation. In our simulation, we stop
iteration as soon as a codeword is detected or when a

37

Construction and Simulation Analysis of Low-Density Parity-Check Codes

maximum number of iteration is reached. The maximum
number of iteration is set to 10.

Fig. 3 shows the frame error rate as a function of the energy
per bit (Eb) to the spectral noise density (N0) – Eb/N0 and 30
codewords errors. Fig. 4 shows the bit error rate as a function
of Eb/N0.

0 0.5 1 1.5 2 2.5 3
10-2

10
-1

100
Frame Error Rate

FE
R

Eb/No (dB)
Fig.3 Frame error rate (FER) for LDPC codes over the additive white

Gaussian noise channel

0 0.5 1 1.5 2 2.5 3
10-3

10
-2

10-1

100
Bit Error Rate

B
E

R

Eb/No (dB)
Fig.4 Bit error rate (BER) for LDPC codes over the additive white

Gaussian noise channel

V. CONCLUSION

Analysis techniques formulated for LDPC codes are generic
and can be used for other coding schemes based on iterative
decoding methods. Each LDPC code is characterized by a
number of fixed parameters that include the following: check
node degree, variable node degree and blocksize N. These
parameters are used to determine the nodes in the LDPC
factor graph and a collection of permissible edges between the
nodes. Given these parameters, there exists a finite number of
possible ways in which edges can be connected between
nodes in a factor graph. By varying the parameters of the

graphs to increase their girth one can improve the distance
properties of the code without increasing the number of parity
checks in which each bit is involved. However the size of the
graph and hence size of the code, required grows rapidly.
Some modifications to standard decoding algorithms for
LDPC codes have also been presented.

Finally, the goal of this paper was to present the main
constructive principle of low–density parity check codes, as
well as a design methodology, that gives good performance
for many communication systems like latest DVB satellite
communications standard.

ACKNOWLEDGEMENT

The author is grateful to Georgi Petkov for his helpful
comments.

REFERENCES

[1] R. G. Gallager, “Low density parity check codes,” IRE Trans.
Inf. Theory, vol. IT-8, no. 1, pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near-Shannon-limit
performance of low density parity check codes,” Electron. Lett.,
vol. 32, pp. 1645–1646, Aug. 1996.

[3] D. J. C. MacKay, “Good error-correcting codes based on very
sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp.
399–432, Mar. 1999.

[4] T. Richardson and R. Urbanke, “The capacity of low-density
parity check codes under message-passing decoding,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[5] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of
capacity approaching low density parity check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[6] R. M. Tanner, “A recursive approach to low complexity codes,”
IEEE Trans. Inf. Theory, vol. IT-27, no. 9, pp. 533–547, Sep.
1981.

[7] F. R. Kschischang, B. J. Frey, and H. -A. Loeliger, “Factor
graphs and the sum-product algorithm,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[8] R. M. Tanner, “Spectral graphs for quasi-cyclic LDPC codes,”
in Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, Jun.
2001, p. 226.

[9] S. Lin and D. J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, 2nd ed. Upper Saddle River,
NJ: Prentice-Hall, 2004.

[10] G. D. Forney, “Codes on graphs: Normal realizations,” IEEE
Trans. Inform. Theory, pp. 520–548, Feb. 2001.

[11] C. Schlegel, L. Perez, Trellis and turbo coding, IEEE Press,
2004

38

