

Touch Interface Framework for
GIS based C4I Systems

Aleksandar Milosavljević1, Dejan Rančić2, Aleksandar Dimitrijević3 and
Vladan Mihajlović4

Abstract – This paper presents GinisUI framework for rapid
development of advanced graphical user interfaces with features
such as control transparency, automatic arrangement and
zooming. GinisUI is specially designed and implemented for
appliance in GIS based C4I systems with touchscreen use. The
framework relies on XML for specifying interface components
and their layout. Because C4I systems combine GIS functionality
with Virtual Reality (VR) their applications demand both 2- and
3-dimensional visualization. To enable seamless visual transition
between these two modes, UI component visualization in GinisUI
is implemented using both GDI and OpenGL drawing.

Keywords – Touch Interface, Framework, GIS, C4I, XML.

I. INTRODUCTION
A geographic information system (GIS) is special type of

computer-based information system tailored to store, process,
and manipulate geospatial data [1]. The ability of GIS to
handle and process both location and attribute data
distinguishes GIS from other information systems. It also
establishes GIS as a technology important for a wide variety
of applications [2]. For many years GIS has been considered
to be difficult, expensive, and proprietary. The advent of
graphical user interface (GUI), powerful and affordable
hardware and software, and public digital data has broadened
the range of GIS applications and brought GIS to mainstream
use in the 1990s [2]. Despite the success of various GIS
applications, their current use and usability is still constrained
by overly complex user interfaces [3].

The acronym C4I is used to represent the following group
of related military functions that enable the coordination of
operations: Command, Control, Communication, Computers,
and Intelligence [4]. Command and Control refers to the
ability of the military commander to direct his forces. The
addition of Communications to the grouping reflects the fact
that communications is required to enable this coordination. In
modern warfare, computers are also a key component, while
Intelligence is the knowledge relevant to the coordination of

forces.
One important capability that C4I systems provide

commanders is situational awareness, i.e. information about
the location and status of enemy and friendly forces [5].
Therefore, building a C4I system must rely on some GIS
functionality. Certainly, the most important is mapping,
positioning, map navigation, and overlay analysis using
different layers of information to create a map.

Users of C4I systems are commanders at different levels of
army command chain. Some lower levels of the command
require embedment of C4I systems into combat vehicles. Such
conditions require use of touchscreen for human interaction
with the system.

To enable rapid development of an effective touchscreen
graphical user interface for GIS based C4I systems we relied
on a design and implementation of a GUI user interface
framework.

Framework is a generic term for a powerful object-oriented
reuse technique that typically emphasizes the reuse of design
patterns and architectures [6]. There are two common
definitions of an application framework [6]. The first defines
an application framework as a reusable design of the entire, or
part of a system represented by a set of abstract classes and
the way their instances interact, while the second states that an
application framework is the skeleton of an application that
can be customized by an application developer. These
definitions are complementary, not conflicting, since the
former describes framework from the design perspective,
whereas the latter describes it from the functional viewpoint.

The paper is organized as follows: Section 2 gives brief
overview of user interface paradigms. Section 3 discusses
design issues and the architecture of GinisUI framework.
Section 4 presents GUIDL – XML language for describing
GinisUI user interfaces. Section 5 considers presentation of a
tank C4I system touch interface, and Section 6 summarizes
the results achieved.

II. USER INTERFACES
A user interface is the aggregate of means by which people

(the users) interact with a particular machine, device,
computer program or other complex tool (the system) [7]. A
graphical user interface (GUI) is a method of interacting with
a computer through a metaphor of direct manipulation of
graphical images and widgets in addition to text. Touch
interfaces are graphical user interfaces using a touchscreen
display as a combined input and output device.

1Aleksandar Milosavljević is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
alexm@elfak.ni.ac.yu

2Dejan Rančić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
ranca@elfak.ni.ac.yu

3Aleksandar Dimitrijević is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
aks@elfak.ni.ac.yu

3Vladan Mihajlović is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
wlada@elfak.ni.ac.yu

261

Touch Interface Framework for GIS based C4I Systems

Most modern general-purpose GUIs consists of graphical
widgets such as windows, menus, radio buttons, check boxes,
and icons, and employs a pointing device (such as a mouse,
trackball, or touchscreen) in addition to a keyboard. Those
aspects of GUIs can be emphasized by using the acronym
WIMP (Windows, Icons, Menus, and Pointing device). GUIs
that do not follow WIMP paradigm are most notably found in
computer games. Another research direction in advancement
of GUI is the Zooming User Interfaces (ZUI) [8].

The raising popularity of touch interfaces can be described
by a fact that a touchscreen provides the simplest, most direct
user interface with a computer [9]. Properly programmed, a
touchscreen interface can be intuitive, requiring no learning
curve for first time users. Touchscreens are also rugged
enough to stand up to harsh environments where keyboards
and mice can become damaged. Touchscreens ensure that no
space is wasted because the input device is completely
integrated into the monitor.

III. GINISUI FRAMEWORK
GinisUI is an application specific GUI framework specially

designed and implemented for appliance in GIS based C4I
systems with touchscreen use. General concepts underlying
the design and the implementation of this application
framework are already used in our GIS application framework
Ginis [10].

GinisUI framework aimed domain is a C4I system
embedded within combat vehicle and integrated with existing
command, control, and communication subsystems. Harsh
environment, and usually limited vehicle inner space require
use of relatively small touchscreen interfacing devices.

Because these systems are GIS based, their basic purpose is
to display layered map of surrounding area with a variety of
geographically located information. So the problem was to
develop a touch interface that fits on a relatively small screen
already overcrowded with other information. Furthermore,
pointing with a finger to a screen in the environment of a
shaking combat vehicle requires buttons big enough to avoid
mistakes.

Our solution to the problem was to develop a user interface
that will enable:
• Transparency,
• Zooming and
• Automatic arrangement of controls.
Transparency is introduced to enable integration of user

interface into a full-screen geographic map. This feature is
combined with a zooming feature that represents enlargement
of buttons when they get input (pointer) focus.

To further preserve an information view area, from the user
interface, we included control showing/hiding and automatic
arrangement. This feature enables design of a user interface
that can automatically reconfigure to a current mode of an
application.

GinisUI framework is designed and implemented to enable
rapid development of user interfaces that fulfil identified
requirements. To enable rapid development, the framework
relies on XML for specifying interface components and their
layout.

Logical architecture of GinisUI framework is based on
relatively simple and known concepts (Fig. 1). Class GUI is
the main class that acts as an interface between an application
and the user interface (UI). It is derived from GWindow class,
and it holds top-level UI controls (instances of GControl
subclasses GToolbar, GButton, GText, and GPicture).

Fig. 1. Logical model of GinisUI framework

Characteristics of a UI control window are defined through
GWindow class. General attributes of a window are
background colour or background image and window
transparency. Optional attributes are border, layout and font.

An implementation of different window border types is
done through GBorder abstract class and their subclasses.
Class GBorderSimple implements rectangular border type,
while class GBorderRound is obliged for rounded window
borders. Further extension of the framework with other border
types can be done by implementation of appropriate
GBorder subclasses.

Abstract class GLayout acts as a template for
implementation of different window layouts. GinisUI
framework currently enables docked (class
GLayoutDocked) and free layouts (class GLayoutFree)
of UI controls in corresponding parent windows. Controls can
be docked on the top, bottom, left or right of the parent
window, or they can be freely placed on some absolute
position.

A style, size and colour of a text, that is to be displayed
within GText control, are defined by GFont object attached
to a control or some of its parent windows. This approach
ensures range of possibilities from setting different font each
control, to using single font for all controls in the UI.

As we already stated, GWindow part of a UI control object
deals with display and arrangement of controls. Behaviour of
a control (e.g. button) is implemented by event catching
mechanism realized in GControl part of the object.
Different event types (e.g. mouse button down, mouse move,
keyboard button down, etc.) are defined by GEvent objects
that can be attached to a UI control. When event happen, an
application should call corresponding GUI interface methods
(OnLButtonDown, OnMouseMove, etc.) that returns a
pointer to a control that caught the event. An application that
uses this framework, knowing the control name, should then
handle that event.

262

Aleksandar Milosavljević, Dejan Rančić, Aleksandar Dimitrijević and Vladan Mihajlović

Because C4I systems combine GIS functionality with
Virtual Reality (VR) their applications demand both 2- and 3-
dimensional visualization. To enable seamless visual
transition between these two modes, UI component
visualization in GinisUI is implemented using both GDI (GUI
class Draw method) and OpenGL drawing (GUI class
DrawGL method).

Described framework defines only basic building blocks
needed for a user interface. Building a concrete user interface
for some application additionally requires explicit definition
what and how these blocks create the interface. For encoding
of this definition we use XML. In order to constrain content of
these XML documents, we specified appropriate XML
language named Ginis User Interface Definition Language
(GUIDL).

IV. XML LANGUAGE GUIDL
GUIDL represents XML language specified using XML

Schema Definition Language. A valid GUIDL XML
document represents definition of a user interfaces that can be
realized using GinisUI framework.

The structure of GUIDL and GinisUI logical model are
closely related. All classes shown in Fig. 1 have their
corresponding XML elements in the language specification.
To enable setup of instantiated object properties from XML
definition, these classes implement virtual method Create.

Fig. 2. Structure of an XML definition of a window

Fig. 2 shows structure of a complex XML element type
WindowType that corresponds to GWindow class.
Contained elements Font, _Border and _Layout are used
to optionally setup font, border and layout properties of a
control window. Elements _Border and _Layout are
abstract and serves as placeholder for appropriate substitutes
(e.g. RoundBorder and DockedLayout).

Complex type ControlType, shown in Fig. 3, is defined
as an extension of WindowType and corresponds to
GControl class. ControlType additionally defines events

that control shall catch and different control titles for
multilingual support.

Fig. 3. Structure of an XML definition of a control

Finally, knowing structures of window and control element
types, we can discuss structure of a root element UIDef (Fig.
4) that corresponds to GUI class. The root element inherits
structure of WindowType that is used for specification of an
UI background window. Additionally, it can contain several
control elements defined through substitution group
_Control.

Elements Toolbar, Button, Text and Picture (Fig.
4) are used to specify properties and structure of actual user
interface controls. All these elements extend previously
described ControlType (Fig. 3) with additional properties
defined in corresponding classes GToolbar, GButton,
GText and GPicture (Fig. 1). For example, Toolbar
element can contain several control elements; Picture
element has attribute defining filename of an image that will
be shown and Button element can optionally contain images
for normal and focused display.

Fig. 4. Structure of an XML definition of a user interface

V. TOUCH INTERFACE FOR A TANK C4I SYSTEM
To illustrate features implemented in GinisUI framework,

we present touch interface of a tank battlefield management
system (BMS). BMS is in essence geographical information
system extended with a command, control, communication,
and virtual reality functions. BMS is equipped with a
touchscreen for interfacing with a user.

263

Touch Interface Framework for GIS based C4I Systems

BMS application can run in two modes: combat and
planning; with two different views: 2D and 3D. Each mode
with each view has different functions that user should be able
to access through an interface.

Fig. 5. BMS user interface in the 2D View

Fig. 6. BMS user interface in the 3D View

The user interface of BMS can be divided in always visible
and visible on demand parts. Always visible parts are the main
toolbar on top of the screen, status line at the bottom and
navigation panel placed in the bottom-right corner. These
interface elements are noticeable in Fig. 5 and 6. Depending
on a mode or a view different controls can appear within these
elements. The other, visible on demand part of the BMS user
interface consists of various panels (Fig. 6), dropdown
toolbars, message boxes, etc.

Fig. 6 shows BMS in the 3D view. BMS 3D view represents
VR extension of GIS. It is used to display virtual terrain with
some additional 3D objects (combat vehicles, trees, houses,
buildings, etc.). This figure also shows 3D view specific
compass panel and general system status panel.

User interface transition between 2D view (Fig. 5) which is
drawn using GDI functions, and 3D view (Fig. 6) visualized
using OpenGL, is seamless.

VI. CONCLUSION

We have discussed problems and identified requirements
for a user interface of a GIS based C4I systems for combat
vehicle embedment. Problems that we have faced were:
• Limited vehicle inner space – use of small touchscreen

interfacing devices.
• Harsh environment – shaking of combat vehicles during

use.
• Large amount of information to display – a geographic

map or a virtual 3D terrain.
The solution that helps to reduce these problems relies on

three key concepts:
• Transparency – enables integration of user interface with

a background map or a virtual 3D terrain.
• Zooming – enables enlargement and additional

information display of focused buttons.
• Automatic arrangement – combined with show/hide

mechanism enables reconfiguration of a user interface to
a current mode of an application.

Further, in the paper, we have introduced GinisUI, an
application framework designed and implemented to enable
rapid development of user interfaces based on these three
concepts.

Described framework defines only basic building blocks
needed for a user interface, while building a concrete user
interface additionally requires explicit XML description what,
and how these blocks create an interface. In addition to, and
based on the framework, we specified XML language GUIDL
to cope with these UI descriptions.

Finally, as an evaluation of our solution, we presented a
case study concerning successful user interface realization of
a C4I Battlefield Management System.

REFERENCES

[1] Worboys, M., and Duckham, M., GIS: A Computing
Perspective, Second Edition, CRC Press, Boca Raton, FL, 2004.

[2] Chang, K., Introduction to Geographic Information Systems,
Third Edition, McGraw-Hill, New York, NY, 2005.

[3] Rauschert, I., Sharma, R., Fuhrmann, S., Brewer, I., and
MacEachren, A., "Approaching a New Multimodal GIS-
Interface", 2002, http://www.geovista.psu.edu.

[4] C4ISTAR, Wikipedia, http://en.wikipedia.org/wiki/C4I.
[5] What is C4I?, C4I.org, http://www.c4i.org/whatisc4i.html.
[6] Fayad, M., Johnson, R., and Schmidt, D., Building Application

Frameworks: Object-Oriented Foundation of Framework
Design, John Wiley & Sons, 1999.

[7] User Interface, Wikipedia, http://en.wikipedia.org.
[8] Bederson, B., and Meyer, J., "Implementing a Zooming User

Interface: Experience Building Pad++", Software: Practice and
Experience, Vol. 28, No. 10, pp. 1101-1135, 1998.

[9] Small, C. H., "Touchscreens Provide a Robust and Intuitive
User Interface", TechOnLine, http://www.techonline.com.

[10] Milosavljević, A., Đorđević-Kajan, S., and Stoimenov, L., An
Architecture for Open and Scalable WebGIS, 8th AGILE
Conference on GIScience, pp. 629-634, Estoril, Portugal, 2005.

[11] Milosavljević, A., and Stoimenov, L., "Implementation Model
of Ginis framework for Web-based GIS", ETRAN 2005,
Conference Proceedings, pp. 35-38, Budva, Montenegro, 2005.
(in Serbian)

264

