

Full-text Search Over WebDAV Repository
Vladica M. Ognjanović1 and Milan Lj. Gocić2

Abstract – This paper introduces an advanced architecture of
full text search over multiple WebDAV repositories. Proposed
approach achieve integrated full text search including two
important functionalities, namely the possibility to return results
which only partially match the query and to rank results
accordingly.

In essence, our work is related with high performance
indexing, i.e. processing the original data into highly efficient
cross-reference lookup tables in order to facilitate rapid
searching.
 Experimental results from various tests show that execution
time is within the limits of a few seconds making this solution
applicable for most common users.

Keywords – WebDAV, full-text search, inverted index,
metadata search, context search.

I. INTRODUCTION

The amount of necessary information in a business world is
growing at a prodigious rate. The users are becoming more
dependent on search engines for locating relevant information.

In most cases, an issued query will result in hundreds of
matching documents. In order to avoid flooding the users with
a huge amount of results, the search engines present the
results in batches of 10 to 20 relevant documents. The user
then looks through the first batch of results and if the answer
does not exist, he can potentially request to view the next
batch. This process is repeated until the user either finds what
he is looking for or gives up trying.

Architecture that we propose in this paper allows user to
efficiently search over multiple WebDAV (Web-based
Distributed Authoring and Versioning) [1] repositories.
Currently, existing search support over WebDAV is limited to
one repository at the time. It is also dependant on support of a
server operating system indexing service (in our case
windows indexing service). There are two types of search:
search of a documents metadata and a context search. The
metadata search includes retrieving some of the document
properties like url, creation date, last modified date, length
and others. The context search is used for fetching the
documents based on their context and user request. This
architecture introduces a multi-user system capable of
handling the context search of multiple repositories with fast
response, reviewing of results, partially matching the query
and ranking results.

II. ARCHITECTURE

The goal of this architecture is to simplify the search of
multiple repositories. Users must register to the system and
specify web folders of their interest. The system uses
WebDAV as a front-end to collect documents and a file
system as a back-end to store essential data of documents.
Architecture of the solution is presented in Fig. 1.

Fig. 1. Search service architecture

The presented search service architecture consists of five

main modules: WebDAV module, IFilter module, indexer
module, search module and client module.

A. WebDAV module

WebDAV [2-3] is a set of extensions (new headers and new
methods) added to HyperText Transfer Protocol 1.1 to support
collaborative authoring on the Web. While HTTP is a reading
protocol, WebDAV is a writing protocol created by a working
group of the Internet Engineering Task Force (IETF), which
has defined extensions for six capabilities: overwrite
protection, properties, name-space management, version
management, advanced collections and access control.

The WebDAV extensions support the use of HTTP for
interoperable publishing of a variety of content, providing a

1Vladica M. Ognjanović is with Accordia Group, Kneginje
Ljubice 1/1, 18000 Niš, Serbia, E-mail:
vladicaognjanovic@gmail.com

2Milan Gocić is with Accordia Group, Kneginje Ljubice 1/1,
18000 Niš, Serbia, E-mail: mgocic@yahoo.com

265

Full-text Search Over WebDAV Repository

common interface to many types of repositories and making
the Web analogous to a large-grain, network-accessible file
system. To this time, WebDAV is incorporated into most
current operating systems and applications where it performs
seamlessly. Since DAV is a single wire protocol like HTTP, it
offers a more secure and faster method of file transfer than the
one provided by the dual-channel File Transfer Protocol
(FTP). Searching using metadata was one of the priorities in
the development of DAV. Searching a context of remote web
items over WebDAV is supported by operating system on the
server in most cases is time consuming.

Collecting properties of web items is a primary task of the
WebDAV module. A special accent is put on href,
getlastmodified and iscollection properties. Metadata search
process is done in three steps:
• Querying server for items metadata is done with a query

like:
<?xml version="1.0"?>
<a:searchrequest xmlns:a="DAV:">

 <a:sql>
SELECT * FROM SCOPE('DEEP
 TRAVERSAL OF "<web folder
 ulr>"')

</a:sql>
</a:searchrequest>

In this example all properties are requested from
server. Explicit request of some properties can be done
by modifing SELECT clause.

• Processing of a server reply is based on parsing XML.

Server response contains many properties, but we will
consider only the listed ones.

<?xml version = "1.0"?>
<a:multistatus xmlns:b = "… " xmlns:a = "DAV:">
<a:response>

<a:href>
<item url>

</a:href>
<a:propstat>

<a:status>
HTTP/1.1 200 OK

</a:status>
<a:prop>

 …
 <a:getlastmodified

 b:dt = "dateTime.rfc1123">
Sat, 20 Jan 2007 17:14:02 GMT

</a:getlastmodified>
<a:iscollection b:dt = "boolean">

0
</a:iscollection>

 …
</a:prop>

</a:propstat>
</a:response>
</a:multistatus>

Documents and collections are identified by <itemurl>
and the difference between is made by iscollection
property.

• Based on all collected information on some item this
module will either send document for a further
processing or not. As shown in Fig. 1. this decision is
based on the getlastmodfied field.

B. IFilter module

IFilter [4] is a COM component that uses installed IFilter
providers to extract the text and to allow the indexer to read
different file formats. The providers for the various formats
are available from most vendors.

The IFilter interface scans documents for text and
properties and extracts chunks of text from these documents,
filtering out embedded formatting and retaining information
about the position of the text, providing the foundation for
building higher-level applications such as document indexers
and application-independent viewers.

This interface is implemented to provide a filter for
extracting information from a proprietary file format so that
the text and properties can be included in the index.

IFilter module searches for a dll and ClassID of COM
object responsible for filtering a specific file extension. Then
it loads that dll, creates an appropriate COM object and
returns a pointer to the IFilter instance which is used to read a
plain text from a document.

C. Indexer module

The goal of storing an index is to optimize the speed and
performance of finding relevant documents for a search query.
Fast query evaluation makes use of an index: a data structure
that maps terms to the documents that contain them. With an
index, query processing can be restricted to documents that
contain at least one of the query terms.

Search engine architectures vary in how indexing is
performed and in index storage to meet the various design
factors. Types of indices include: suffix trees, trees, inverted
indices, citation indices, Ngram indices, term, document
matrices.

Architecture presented in this paper is based on inverted
indices. An inverted index [5-7] is an optimized structure that
is built primarily for retrieval, with update being only a
secondary consideration. The basic structure inverts the text
so that instead of the view obtained from scanning documents
where a document is found and then its terms are seen, an
index is built that maps terms to. Instead of listing each
document once, an inverted index lists each term in the
collection only once and then shows a list of all the documents
that contain the given term. Each document identifier is
repeated for each term that is found in the document.

Index module architecture is given in Fig. 2. The core of
index module is a keyword dictionary. Keyword dictionary is
actualy a dictionary where key is a word and the value is a
structure containing two integers and one boolean. Integers
are wordId and rank, and boolean is reserved for all illegal

266

Vladica M. Ognjanović and Milan Lj. Gocić

words and characters (like stop words, commas, etc.). The
rank represents a frequency of word in user queries, and it is
primarily used for search suggestion.

Fig. 2. Index module architecture

In close relation to keyword dictionary is a document map

dictionary which is also represented as dictionary, with
wordId as the key and array of structure of two integers as the
value, the first integer is document id and the second is
number of appearances. These two dictionaries reside in main
memory. It is important to point out that every keyword and
document have unique identifier.

When we get a word from a document, the first we check if
a dictionary already contains that word, and if that is true we
get the corresponding value in the documentMap dictionary
and increase the number of appearances for the current
document or add a new entry. Otherwise we create new word
id and check if a word or a character is illegal. If illegal we
just add it to dictionary, and if not we create a new entry in the
documentMap dictionary.

Building index for some document is very simple. If a
document is already processed we simply delete all previous
information (this includes updating keyword and document
map dictionary, and moving the appropriate file from file
system to history). After extracting words from documents,
we update keyword and document map dictionary as
described. Every wordId is stored in the file system and these
wordIds array represents documents in this architecture. The
maintenance of documents on the file system is the main
reason why all the words (legal and illegal) are kept in an one
place.

Cash manager is utilized for quick accessing to frequently
used documents and to managing the main memory occupied
by cash.

Some of major factors in designing a search engine's
architecture include:
• merge factors – merging is done by rebuilding index on

document,

• storage techniques - file system is used as a back-end,
• index size - considering word encoding index size can be

estimated up to 200 times smaller than original
documents size,

• lookup speed – lookup time is within the limits of a few
seconds,

• maintenance - rebuilding index makes a maintenance
simplified, and

• fault tolerance - rebuilding index and periodical autosave
of objects in main memory makes this approach reliable.

D. Search module

The primary task of search module is to manage all other
modules, as shown in Fig. 1. User, document and history
manager are additional parts of the search module. Document
manager encapsulates document information, document
owners and last index build time. History manager is used for
versioning documents. For storage reasons it can be limited to
last 10 versions of documents and the compression could be
applied. User manager keeps track of user in system, his
documents, authentication and user notification (notification
of document updates by email).

Search module periodically iterate throw list of registered
repositories and triggers WebDAV module. WebDAV module
collects documents metadata, filters documents by iscollection
and getlastmodified property and sends filtered documents to
IFilter. IFilter extracts plain text from documents. The plain
text is forwarded to tokenizer that is used for deriving words
from text. Index module sends existing document index to
history and rebuilds index on a current document.

Document searching involves:
• extracting tokens from user query,
• inquiring keyword dictionary for a list of document ids

for each token,
• intersection of lists from keyword dictionary,
• ranking results based on tokens appearance in a

document, and number of tokes found in document,
• returning rank results to user,
• results represent documents urls.
User can review a part of the document that contains tokens

from search query. Namely, since all words from documents
are encoded with corresponding ids, sliding window with the
size of 50 words is used to parse document. Every window
that contains ids of search tokens is decoded and returned to
user.

E. Client module

Client module represents user interface, providing user
registration and search service.

III. EXPERIMENTAL RESULTS

The prototype based on the proposed architecture is used
for obtaining the experimental results; all tests were
performed on four representative documents of different

267

Full-text Search Over WebDAV Repository

types. The first and third documents are word document; the
second is power point document; and the fourth is a PDF a
document.

Index size in term of word count is given in Table 1.

 TABLE I
WORD COUNT AND INDEX SIZE

Original document size and index size ratio are represented

in Table 2. Having in mind that each word is represented with
four bytes the result can be estimated like in the following
example: the expected index size of the third document with
approximately 10000 words would be 10000 * 4B = 40 KB

 TABLE II
ORIGINAL DOCUMENT SIZE AND INDEX SIZE RATIO

 If all words from document are present in keyword

dictionary and if a document is already processed by
tokenizer, the build index times would be as shown in Table 3.

TABLE III
DOCUMENT INDEXIG TIME

IV. CONCLUSION

In this paper we have proposed an architecture for full-text
search over WebDAV repository.

This architecture improves efficiency of retrieval and
enables efficient update of the inverted lists, which is
especially important for swift acknowledgement of the
document updates.

We plan to implement a complete system based on the
proposed architecture that will validate the experimental
results.

REFERENCES

[1] M. E. O’Shields, P. J. Lunsford II, “WebDAV: A Web-Writing
Protocol and More”, Journal of Industrial Technology, Volume
20, Number 2, 2004.

[2] E. J. Whitehead, M. Wiggins, “WebDAV: IETF Standard for
Collaborative Authoring on the Web”, IEEE Internet
Computing, September/October 1998, pages 34- 40.

[3] WebDAV, Retrieved February 1, 2007, www.webdav.org
[4] IFilter, Retrieved April 10, 2007,

http://msdn2.microsoft.com/en-us/library/ms691105.aspx
[5] A. Trotman, “Compressing inverted files”, Kluwer Int. J.

Inform., 2003., 5–19.
[6] E. M. Voorhees, D. K. Harman, “TREC: Experiment and

evaluation in information retrieval”, MIT Press, Cambridge,
MA., 2005.

[7] J. Zobel, A. Moffat, “Inverted files for text search engines”,
ACM Computing Surveys (CSUR), Volume 38 , Issue 2
Article No. 6, ACM Press New York, NY, USA, 2006.

Document
number

Number of words per document
(approximately)

Index size
on disk
[kB]

1 3500 14
2 2000 9
3 10000 39
4 34300 135

Document
number

Original document
size[kB]

Original document size
/ index size

1 3900 278
2 172 19
3 6300 161
4 145 1.07

Document number Build index time [s]
1 2.3
2 2.2
3 2.7
4 3.6

268

