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Abstract – The paper presents general aspects of 
implementation of a new mark-up language used for service 
creation. The language interpreter consists of two parts: lexical 
analyzer which recognizes the lexical units of the language, and 
the parser which performs syntax analysis of the input sequence 
of tokens in order to determine its grammatical structure with 
respect to language formal grammar. During interpretation, for 
each language construction correctly recognized by the parser, 
an appropriate Java construction is activated.  
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I. INTRODUCTION 

Markup languages have found their way into almost every 
facet of telecommunications from provisioning services 
through network management systems and even scripting 
languages for automated voice services. 

Because of fast and complicated hardware there is no need 
to optimize the use and encoding of information in protocols 
and databases in binary form. The simplicity and ease of 
understanding make text encoding preferable both in 
representing information in databases and in encoding 
protocol messages. This, combined with the view that content 
means revenue, is giving rise of markup languages for next 
generation service creation [1], [2].  

There exist several markup languages proposed for service 
creation. Languages like CPL (Call processing Language), 
VoiceXML (Voice eXtensible Markup Language), CCXML 
(Call Control eXtensible Markup Language) are mainly 
oriented towards call control i.e. the creation, manipulation, 
termination and teardown of communication sessions. None 
of the existing markup languages supports functions like 
mobility, user status, terminal capabilities, charging and 
others. These network functions can be accessed by 
Parlay/OSA (Open Service Access) interfaces. Parlay/OSA is 
a service framework which defines application programming 
interfaces (APIs) for third party service developers. The idea 
behind API is to hide network specifics and protocol 
complexity for service developers. 

We suggest a new mark-up language called Service Logic 
Processing Language (SLPL) which is developed to meet 
challenges of service creation [3]. The language supports the 
whole palette of network functions exposed by Parlay/OSA 
interfaces.  

One of the factors that determine language usability 

depends on availability of supporting tools. An SLPL 
interpreter is developed that makes lexical analysis of service 
logic description, builds an abstract syntax tree and makes 
mapping of abstract tree’s nodes to appropriate Java 
constructions. To ease the process of service description a 
translator from IDL (Interface Description Language) to SLPL 
is also developed. The IDL is a language used to specify data 
types and method definitions of Parlay/OSA APIs. Because of 
the huge amount of data types and methods defined, this tool 
allows translation of Parlay/OSA definitions into SLPL ones.  

In the paper we present some aspects of the implementation 
of SLPL interpreter and of translator from IDL to SLPL. 

II. SLPL INTERPRETATIONAL APPROACH 

The interpretation of the logic is separated into four 
processing phases – front processing, lexical analysis, 
syntactical analysis, and execution. Fig.1 shows the 
interpretational approach of execution of service logic 
described in  SLPL. 

 
Fig.1 Interpretational approach 

The front processing is in charge of loading the service 
script i.e. making an instance of the logic script. Ready-to-use 
parts of script containing SLPL data types and methods 
definitions are imported from the SLPL library. After 
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including definitions in the original instance, the SLPL 
preprocessor produces a merged, extended instance.  

The main task of the SLPL lexical analyzer is to recognize 
the lexical units of the language like identifiers, key words, 
literals and so on. The extended instance of service script is 
lexically converted into a sequence of tokens and then the 
sequence is passed as input to the parser.  

The SLPL parser performs syntax analysis of the input 
sequence of tokens in order to determine its grammatical 
structure with respect to SLPL formal grammar. The SLPL 
parser is to decide whether the sequence is acceptable in the 
terms of the syntactic rules of the language. If it is to be 
rejected, then error log is open. Parsing transforms input 
sequence of tokens into a data structure (an abstract tree), 
which is suitable for later processing and which captures the 
implied hierarchy of the input. 

During real processing for each language construction 
recognized correctly by the SLPL parser, an appropriate Java 
construction is activated. 

III. SLPL INTERPRETER 

The main task of SLPL lexical analyzer is to break SLPL 
service logic description into tokens. The lexical analyzer 
processes the input sequence of characters to recognize the 
lexemes and to evaluate their type.  

The input sequence scanning is based on finite state 
machine. It has encoded within it information on the possible 
sequences of characters that can be contained within any of 
the tokens it handles.  

The finite state machine (FSM) of the lexical analyzer is 
table-based. The state-table defines all details of the behavior 
of FSM. It consists of three columns: in the first column state 
names are used, in the second the virtual conditions built out 
of input names using the positive logic algebra are placed and 
in the third column the output names appear. 

Fig.2 shows an example of FSM that recognizes the key 
words val, valref and value. 

The lexeme types in SLPL are the following: 
• literals (integer, long, float, double, octet, logical and 

character) 
• operators (for example equation) 
• separators (for example space, slash, angular brackets, 

double quotes) 
• identifiers  
• key words. 

In order to construct a token, the lexical analyzer needs to 
evaluate the characters of the lexeme that is to produce a 
value. The lexeme's type combined with its value is what 
properly constitutes a token, which can be given to a parser.  

For example, let us consider the SLPL language 
construction for synchronization. For the input  

<wait timeout="20"/> 
the SLPL lexer ignoring spaces recognizes the type and value 
of the tokens listed in Table 1.  

The sequence of tokens is passed as input to the SLPL 
parser. 

 
Fig.2 FSM recognizing SLPL lexemes 

TABLE 1 
LEXEMES AND THEIR TYPE 

< separator 
wait key word 
timeout key word 
=  operator 
" separator 
20 integer literal 
" separator 
/ separator 
> separator 

 
The SLPL parser analyzes the sequence of tokens to 

determine its grammatical structure with respect to the SLPL 
formal grammar. Its task is essentially to determine if and how 
the input can be derived from the start symbol within the rules 
of the SLPL formal grammar. This is done in a top-down 
parsing manner. The SLPL starts with the start symbol and 
tries to transform it to the input. The parser starts from the 
largest elements and breaks them down into incrementally 
smaller parts. It is LL parser i.e. it parses the input from left to 
right, and constructs a leftmost derivation of the sentence.  

The parser builds abstract syntax tree, which is a finite, 
labeled, directed tree, where the internal nodes are labeled by 
grammar rules, and the leaf nodes represent the terminal or 
nonterminal symbols. 
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The SLPL grammar is formally described in Augment 
Backus Naur Form (ABNF). For example, the language 
construction for synchronization “wait-statement” used to 
wait for result of network provided service is formally defined 
with the grammar rules shown in Fig. 3.  

 
Fig.3 Grammar rules for definition of wait-statement 

The SLPL parser has an input buffer, a stack on which it 
keeps (terminal and nonterminal) symbols from the grammar, 
a parsing table which tells what grammar rule to use given the 
symbols on top of its stack and its input type.  

In order to construct the parsing table, that is to establish 
what grammar rule the parser should choose if it has a 
nonterminal A on the top of its stack and a symbol a on its 
input stream, we have used the algorithm described in [4]. 

For example, Table 2 shows the parsing table for the 
grammar rules defining the “wait-statement”. 

TABLE 2 
PARSING TABLE FOR WAIT-STATEMENT 

 $ wait timeout event name 
wait_def      
wait_def_next   3   
wait_def_ext      
timeouted   6   
event_list      
event_list_ext      
event_list_item    10  
a_name     11 

TABLE 2 
PARSING TABLE FOR WAIT-STATEMENT 

(CONTINUE) 

 slash GB is DQUOTE integer_
literal 

simple
_name 

wait_def       
wait_def_next 2 2     
wait_def_ext 4 5     
timeouted       
event_list       
event_list_ext 9      
event_list_item       
a_name       

The terminal ‘$’ indicates the bottom of the stack. The 
resulting abstract tree from the input sequence of tokens for  

 <wait timeout="20"/> 
is shown in Fig. 4 

 
Fig. 4 Abstract syntax tree built for ‘wait’-statement 

The overview of the abstract syntax tree generated from an 
SLPL service logic description is shown in Fig. 5. 

 
Fig.5 Overview of syntax tree of SLPL grammar description 

During processing correct language structures are compared 
with templates of semantic descriptions and converted into 
Java calls.  

For example, the SLPL language construction for method 
invocation with capturing exceptions is shown in Fig. 6 and 
the corresponding Java code activated is shown in Fig. 7. 

 
Fig. 6 SLPL construction for method invocation  

 
Fig. 7 An example of Java code corresponding to method invocation 

service log

logic_bodylogic_begin definitions logic_end

logic /logic

includes_def var defs method_defdefine /define

1*statement /executeexecute 

wait_def 

(1) 

wait timeouted >/ 

(2) 

timeout "= 20 " 

< 

1. wait_def = LB "wait" [timeouted](slash GB/ GB 
event_list); wait for an even or timeout 

2. timeouted = "timeout” is DQUOTE integer-val DQUOTE
3. event_list = 1*event_list_item LB slash "wait" GB 
4. event_list_item = LB“event” a_name slash GB 
5. a_name = "name" is DQUOTE simple_name DQUOTE
6. integer_literal = 1*DIGIT 
7. simple_name = ALPHA*(ALPHA/ DIGIT/ underscore) 
8. slash = %d47; ‘/’ 
9. is = %d61; ‘=’ 
10. underscore = %d95; ‘_’ 
11. LB = %d60; ‘<’ 
12. GB = %d62; ‘>’ 
13. ALPHA = %d65-90 / %d97-122; A-Z a-z 
14. DIGIT = %d48-57; 0-9

<try> 
     <invoke> 
            <method name = "locationReportReq"> 
                 <arguments> 
                      <argument name = "application" valref = "theAppl"/> 
                      <argument name = "users" valref = "theUsers"/> 
                 </arguments> 
            </method> 
     </invoke> 
     <catch> 
          <exception name = "P_APPLICATION_NOT_ACTIVATED"/> 
          <exit/> 
     </catch> 
</try> 

try {locationReportReq( theAppl, theUsers ); 
       } catch ( ApplicationNotActivatedException e ) 
      { exit(); } 

type_def
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IV. TRANSLATION FROM IDL TO SLPL 

The Parlay/OSA interfaces are specified in IDL which is 
programming language independent. A huge amount of data 
types on which methods operate are included in IDL 
specification. To reduce efforts needed for data types and 
method definition in SLPL an "include-statement" is 
provided. This construction allows including SLPL 
descriptions of methods and data types in the definition part of 
the service logic script. These ready-to-use parts of script are 
located in the script repository, accessed in shared library 
manner. 

To create SLPL script repository a translator form IDL to 
SLPL is developed. As it is shown in Fig. 8, the translator is 
supplied with IDL description as input and the result is SLPL 
description as output.  
 

 
Fig. 8 Translator from IDL to SLPL 

The formal IDL definition of an interface includes data 
types and methods. Each method has a type (the result type), a 
list of arguments of certain type, and a list of exceptions that it 
can raise.  

The translator makes lexical analysis of an IDL description 
to determine tokens and then performs syntactical analysis to 
build an abstract syntax tree corresponding to IDL description. 
During code generation the translator converts the 
syntactically correct IDL descriptions to SLPL ones. 

Fig.9 shows a part of SLPL grammar rules that formally 
define an interface with data types and methods. 

V. CONCLUSION 

The suggested markup language SLPL possesses greater 
expressive power in comparison with existing markup 
languages for service creation. The language supports all 
network function exposed by Parlay/OSA interface. Provided 
language construction for flow control brings SLPL near to 
programming languages. 

The language usability is provided by development of 
language supporting tools such as SLPL interpreter and 
translator from IDL to SLPL. These tools are written in Java 
to achieve portability. Another reason for Java choice as 
implementation language is that we use Ericsson Network 
Resource Gateway SDK (version R5A02) that simulates 
Parlay/OSA interfaces to verify the SLPL functional 
capabilities. The interface method calls of Parlay/OSA 
interface simulator are in form of Java code.  

The approach enables rapid prototyping, rapid application 
development, and easy end-user customization. These facts 
free developers to focus on the creation of new types of 
applications that may bring new revenues to service providers. 

 

 
Fig.9 Formal grammar tool for interface definition in SLPL 
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1. interface_def = LB "interface" a_name GB interface_body LB 
slash "interface" GB 

2. interface_body = inheritance type_defs method_defs 
3. inheritance = LB “inherits” GB inherit_instances LB slash 

“inherits” GB 
4. inherit_instance = 1*(LB “interface” a_name slash GB) 
5. type_defs = (LB "types" 1*type_def slash "types" GB) / 

(LB "types" slash GB) 
6. type_def = simple_type / complex_type / alias_type 
7. simple_type = "integer" / "long" / "float" / "double" / 

"boolean" / "string" / "char" / "octet" / "reference" / "Timer" 
/ "Time" / "Date" / "DateAndTime" / "Duration“ 

8. complex_type = enumerated_type / structured_type / 
sequence_type / union_type 

9. method_defs = (LB "methods" slash GB) / methods_def 
10. methods_def = LB "methods" GB 1*method_def  LB slash 

"methods" GB 
11. method_def = LB “method” a_name method_args 

[body_def] return_type [exceptions_raised] LB slash 
"method" GB 

12. method_args = LB "arguments" GB 1*method_arg LB slash 
"arguments" GB 

13. method_arg = LB "argument" a_name a_type slash 
"argument" GB 

14. return_type = (LB "returns" slash GB) / return_def  
15. return_def = LB "returns" a_type slash GB 
16. exceptions_raised= LB "raises" 1*exception_def slash "raises" 

GB 
17. exception_def = LB "exception" (exception_by_type / 

exception_by_name) slash "exception" GB 
18. exception_by_type= a_type 
19. exception_by_name= a_name 
20. body_def = LB "body" GB 1*statements LB slash “body“ 

GB 
21. statements = assign_statement / invoke_statement / 

wait_statement / if_statement  / case_statement / 
while_statement / goto_statement / try_statement / 
arithmetic_operations / new_statement / exit_statement 
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