

Interpretational Approach to Service Logic Execution
Ivaylo I. Atanasov1 and Evelina N. Pencheva2

Abstract – The paper presents general aspects of
implementation of a new mark-up language used for service
creation. The language interpreter consists of two parts: lexical
analyzer which recognizes the lexical units of the language, and
the parser which performs syntax analysis of the input sequence
of tokens in order to determine its grammatical structure with
respect to language formal grammar. During interpretation, for
each language construction correctly recognized by the parser,
an appropriate Java construction is activated.

Keywords – Mark-up language for service creation, lexical
analysis, parsing, interpreting

I. INTRODUCTION

Markup languages have found their way into almost every
facet of telecommunications from provisioning services
through network management systems and even scripting
languages for automated voice services.

Because of fast and complicated hardware there is no need
to optimize the use and encoding of information in protocols
and databases in binary form. The simplicity and ease of
understanding make text encoding preferable both in
representing information in databases and in encoding
protocol messages. This, combined with the view that content
means revenue, is giving rise of markup languages for next
generation service creation [1], [2].

There exist several markup languages proposed for service
creation. Languages like CPL (Call processing Language),
VoiceXML (Voice eXtensible Markup Language), CCXML
(Call Control eXtensible Markup Language) are mainly
oriented towards call control i.e. the creation, manipulation,
termination and teardown of communication sessions. None
of the existing markup languages supports functions like
mobility, user status, terminal capabilities, charging and
others. These network functions can be accessed by
Parlay/OSA (Open Service Access) interfaces. Parlay/OSA is
a service framework which defines application programming
interfaces (APIs) for third party service developers. The idea
behind API is to hide network specifics and protocol
complexity for service developers.

We suggest a new mark-up language called Service Logic
Processing Language (SLPL) which is developed to meet
challenges of service creation [3]. The language supports the
whole palette of network functions exposed by Parlay/OSA
interfaces.

One of the factors that determine language usability

depends on availability of supporting tools. An SLPL
interpreter is developed that makes lexical analysis of service
logic description, builds an abstract syntax tree and makes
mapping of abstract tree’s nodes to appropriate Java
constructions. To ease the process of service description a
translator from IDL (Interface Description Language) to SLPL
is also developed. The IDL is a language used to specify data
types and method definitions of Parlay/OSA APIs. Because of
the huge amount of data types and methods defined, this tool
allows translation of Parlay/OSA definitions into SLPL ones.

In the paper we present some aspects of the implementation
of SLPL interpreter and of translator from IDL to SLPL.

II. SLPL INTERPRETATIONAL APPROACH

The interpretation of the logic is separated into four
processing phases – front processing, lexical analysis,
syntactical analysis, and execution. Fig.1 shows the
interpretational approach of execution of service logic
described in SLPL.

Fig.1 Interpretational approach

The front processing is in charge of loading the service
script i.e. making an instance of the logic script. Ready-to-use
parts of script containing SLPL data types and methods
definitions are imported from the SLPL library. After

1Ivaylo I. Atanasov is with the Faculty of Communications and
Communication Technologies, Technical University of Sofia, 1000
Sofia, Bulgaria, E-mail: iia@tu-sofia.bg

2Evelina N. Pencheva is with the Faculty of Communications and
Communication Technologies, Technical University of Sofia, 1000
Sofia, Bulgaria, E-mail: enp@tu-sofia.bg

Logic
repository

SLPL service
script

Missing
library

Lexical
errors

Syntax
errors

Run-time
errors

Execution
Interpreter

Front
processing

Lexical
analysis

Abstract
syntax tree

Syntactical
analysis

Preprocessor

Merged
SLPL script

Lexical analyzer

Sequence of
tokens

Parser

387

Interpretational Approach to Service Logic Execution

including definitions in the original instance, the SLPL
preprocessor produces a merged, extended instance.

The main task of the SLPL lexical analyzer is to recognize
the lexical units of the language like identifiers, key words,
literals and so on. The extended instance of service script is
lexically converted into a sequence of tokens and then the
sequence is passed as input to the parser.

The SLPL parser performs syntax analysis of the input
sequence of tokens in order to determine its grammatical
structure with respect to SLPL formal grammar. The SLPL
parser is to decide whether the sequence is acceptable in the
terms of the syntactic rules of the language. If it is to be
rejected, then error log is open. Parsing transforms input
sequence of tokens into a data structure (an abstract tree),
which is suitable for later processing and which captures the
implied hierarchy of the input.

During real processing for each language construction
recognized correctly by the SLPL parser, an appropriate Java
construction is activated.

III. SLPL INTERPRETER

The main task of SLPL lexical analyzer is to break SLPL
service logic description into tokens. The lexical analyzer
processes the input sequence of characters to recognize the
lexemes and to evaluate their type.

The input sequence scanning is based on finite state
machine. It has encoded within it information on the possible
sequences of characters that can be contained within any of
the tokens it handles.

The finite state machine (FSM) of the lexical analyzer is
table-based. The state-table defines all details of the behavior
of FSM. It consists of three columns: in the first column state
names are used, in the second the virtual conditions built out
of input names using the positive logic algebra are placed and
in the third column the output names appear.

Fig.2 shows an example of FSM that recognizes the key
words val, valref and value.

The lexeme types in SLPL are the following:
• literals (integer, long, float, double, octet, logical and

character)
• operators (for example equation)
• separators (for example space, slash, angular brackets,

double quotes)
• identifiers
• key words.

In order to construct a token, the lexical analyzer needs to
evaluate the characters of the lexeme that is to produce a
value. The lexeme's type combined with its value is what
properly constitutes a token, which can be given to a parser.

For example, let us consider the SLPL language
construction for synchronization. For the input

<wait timeout="20"/>
the SLPL lexer ignoring spaces recognizes the type and value
of the tokens listed in Table 1.

The sequence of tokens is passed as input to the SLPL
parser.

Fig.2 FSM recognizing SLPL lexemes

TABLE 1
LEXEMES AND THEIR TYPE

< separator
wait key word
timeout key word
= operator
" separator
20 integer literal
" separator
/ separator
> separator

The SLPL parser analyzes the sequence of tokens to

determine its grammatical structure with respect to the SLPL
formal grammar. Its task is essentially to determine if and how
the input can be derived from the start symbol within the rules
of the SLPL formal grammar. This is done in a top-down
parsing manner. The SLPL starts with the start symbol and
tries to transform it to the input. The parser starts from the
largest elements and breaks them down into incrementally
smaller parts. It is LL parser i.e. it parses the input from left to
right, and constructs a leftmost derivation of the sentence.

The parser builds abstract syntax tree, which is a finite,
labeled, directed tree, where the internal nodes are labeled by
grammar rules, and the leaf nodes represent the terminal or
nonterminal symbols.

L\’e’∨ D ∨ U

1 start

‘v’

‘a’

‘l’
4

found_l
‘r’

6
found _r

‘e’
8

found _e

‘f’

12
identifier

7
found _u

‘u

11
found _f

‘e
9

found _e

10
found
_value

12
found

_valref

L\’l’∨ D ∨ U

L\’a’∨ D ∨ U

(L\ (’u’ ∨’r’))
∨ D ∨ U

L\’f’∨ D ∨ U

L∨ D ∨ U

2
found_v

3
found_a

S ∨ O
5

found
_val

S ∨ O

S ∨ O

L∨D∨U

L\’e’∨ D ∨

L – letter
U – underscore
D – digit
S – space
O – ‘=’

388

Ivaylo I. Atanasov and Evelina N. Pencheva

The SLPL grammar is formally described in Augment
Backus Naur Form (ABNF). For example, the language
construction for synchronization “wait-statement” used to
wait for result of network provided service is formally defined
with the grammar rules shown in Fig. 3.

Fig.3 Grammar rules for definition of wait-statement

The SLPL parser has an input buffer, a stack on which it
keeps (terminal and nonterminal) symbols from the grammar,
a parsing table which tells what grammar rule to use given the
symbols on top of its stack and its input type.

In order to construct the parsing table, that is to establish
what grammar rule the parser should choose if it has a
nonterminal A on the top of its stack and a symbol a on its
input stream, we have used the algorithm described in [4].

For example, Table 2 shows the parsing table for the
grammar rules defining the “wait-statement”.

TABLE 2
PARSING TABLE FOR WAIT-STATEMENT

 $ wait timeout event name
wait_def
wait_def_next 3
wait_def_ext
timeouted 6
event_list
event_list_ext
event_list_item 10
a_name 11

TABLE 2
PARSING TABLE FOR WAIT-STATEMENT

(CONTINUE)

 slash GB is DQUOTE integer_
literal

simple
_name

wait_def
wait_def_next 2 2
wait_def_ext 4 5
timeouted
event_list
event_list_ext 9
event_list_item
a_name

The terminal ‘$’ indicates the bottom of the stack. The
resulting abstract tree from the input sequence of tokens for

 <wait timeout="20"/>
is shown in Fig. 4

Fig. 4 Abstract syntax tree built for ‘wait’-statement

The overview of the abstract syntax tree generated from an
SLPL service logic description is shown in Fig. 5.

Fig.5 Overview of syntax tree of SLPL grammar description

During processing correct language structures are compared
with templates of semantic descriptions and converted into
Java calls.

For example, the SLPL language construction for method
invocation with capturing exceptions is shown in Fig. 6 and
the corresponding Java code activated is shown in Fig. 7.

Fig. 6 SLPL construction for method invocation

Fig. 7 An example of Java code corresponding to method invocation

service log

logic_bodylogic_begin definitions logic_end

logic /logic

includes_def var defs method_defdefine /define

1*statement /executeexecute

wait_def

(1)

wait timeouted >/

(2)

timeout "= 20 "

<

1. wait_def = LB "wait" [timeouted](slash GB/ GB
event_list); wait for an even or timeout

2. timeouted = "timeout” is DQUOTE integer-val DQUOTE
3. event_list = 1*event_list_item LB slash "wait" GB
4. event_list_item = LB“event” a_name slash GB
5. a_name = "name" is DQUOTE simple_name DQUOTE
6. integer_literal = 1*DIGIT
7. simple_name = ALPHA*(ALPHA/ DIGIT/ underscore)
8. slash = %d47; ‘/’
9. is = %d61; ‘=’
10. underscore = %d95; ‘_’
11. LB = %d60; ‘<’
12. GB = %d62; ‘>’
13. ALPHA = %d65-90 / %d97-122; A-Z a-z
14. DIGIT = %d48-57; 0-9

<try>
 <invoke>
 <method name = "locationReportReq">
 <arguments>
 <argument name = "application" valref = "theAppl"/>
 <argument name = "users" valref = "theUsers"/>
 </arguments>
 </method>
 </invoke>
 <catch>
 <exception name = "P_APPLICATION_NOT_ACTIVATED"/>
 <exit/>
 </catch>
</try>

try {locationReportReq(theAppl, theUsers);
 } catch (ApplicationNotActivatedException e)
 { exit(); }

type_def

389

Interpretational Approach to Service Logic Execution

IV. TRANSLATION FROM IDL TO SLPL

The Parlay/OSA interfaces are specified in IDL which is
programming language independent. A huge amount of data
types on which methods operate are included in IDL
specification. To reduce efforts needed for data types and
method definition in SLPL an "include-statement" is
provided. This construction allows including SLPL
descriptions of methods and data types in the definition part of
the service logic script. These ready-to-use parts of script are
located in the script repository, accessed in shared library
manner.

To create SLPL script repository a translator form IDL to
SLPL is developed. As it is shown in Fig. 8, the translator is
supplied with IDL description as input and the result is SLPL
description as output.

Fig. 8 Translator from IDL to SLPL

The formal IDL definition of an interface includes data
types and methods. Each method has a type (the result type), a
list of arguments of certain type, and a list of exceptions that it
can raise.

The translator makes lexical analysis of an IDL description
to determine tokens and then performs syntactical analysis to
build an abstract syntax tree corresponding to IDL description.
During code generation the translator converts the
syntactically correct IDL descriptions to SLPL ones.

Fig.9 shows a part of SLPL grammar rules that formally
define an interface with data types and methods.

V. CONCLUSION

The suggested markup language SLPL possesses greater
expressive power in comparison with existing markup
languages for service creation. The language supports all
network function exposed by Parlay/OSA interface. Provided
language construction for flow control brings SLPL near to
programming languages.

The language usability is provided by development of
language supporting tools such as SLPL interpreter and
translator from IDL to SLPL. These tools are written in Java
to achieve portability. Another reason for Java choice as
implementation language is that we use Ericsson Network
Resource Gateway SDK (version R5A02) that simulates
Parlay/OSA interfaces to verify the SLPL functional
capabilities. The interface method calls of Parlay/OSA
interface simulator are in form of Java code.

The approach enables rapid prototyping, rapid application
development, and easy end-user customization. These facts
free developers to focus on the creation of new types of
applications that may bring new revenues to service providers.

Fig.9 Formal grammar tool for interface definition in SLPL

REFERENCES

[1] Bakker, J. Tweedie, D. and M. Umnehopa, “Evolving service
Creation; New developments in Network Intelligence”,
http://www.argreenhouse.com/papers/jlbakker/Bakker-elenor.pdf

[2] Bakker J-L, R. Jain, “Next Generation Service Creation Using
XML Scripting Languages”, http://www.argreenhouse.com/pa-
pers/jlbakker/bakker-icc2002.pdf

[3] Atanasov I., E. Pencheva, “A Mark-up Approach to Add Value”,
IJIT Enformatika, vol.3, Number 4, pp 267-276

[4] Aho, Sethi, Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, 1986.

[5] Common Object Request Broker Architecture (CORBA), v3.0,
OMG IDL Syntax and Semantics,
http://www.omg.org/docs/formal/00-10-07.pdf

[6] Ericsson Network Resource Gateway SDK (version R5A02)
http://www.ericsson.com/mobilityworld/sub/open/technologies/p
arlay/tools/parlay_sdk

1. interface_def = LB "interface" a_name GB interface_body LB
slash "interface" GB

2. interface_body = inheritance type_defs method_defs
3. inheritance = LB “inherits” GB inherit_instances LB slash

“inherits” GB
4. inherit_instance = 1*(LB “interface” a_name slash GB)
5. type_defs = (LB "types" 1*type_def slash "types" GB) /

(LB "types" slash GB)
6. type_def = simple_type / complex_type / alias_type
7. simple_type = "integer" / "long" / "float" / "double" /

"boolean" / "string" / "char" / "octet" / "reference" / "Timer"
/ "Time" / "Date" / "DateAndTime" / "Duration“

8. complex_type = enumerated_type / structured_type /
sequence_type / union_type

9. method_defs = (LB "methods" slash GB) / methods_def
10. methods_def = LB "methods" GB 1*method_def LB slash

"methods" GB
11. method_def = LB “method” a_name method_args

[body_def] return_type [exceptions_raised] LB slash
"method" GB

12. method_args = LB "arguments" GB 1*method_arg LB slash
"arguments" GB

13. method_arg = LB "argument" a_name a_type slash
"argument" GB

14. return_type = (LB "returns" slash GB) / return_def
15. return_def = LB "returns" a_type slash GB
16. exceptions_raised= LB "raises" 1*exception_def slash "raises"

GB
17. exception_def = LB "exception" (exception_by_type /

exception_by_name) slash "exception" GB
18. exception_by_type= a_type
19. exception_by_name= a_name
20. body_def = LB "body" GB 1*statements LB slash “body“

GB
21. statements = assign_statement / invoke_statement /

wait_statement / if_statement / case_statement /
while_statement / goto_statement / try_statement /
arithmetic_operations / new_statement / exit_statement

Translator from
IDL to SLPL

IDL
description

SLPL
description

390

