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Abstract – The paper is aimed at investigation of parallel 
algorithms for finding minimum spanning tree of a graph. 
Prim’s algorithm and genetic Prim’s algorithms are regarded. 
The impact of cluster size and workload on the parallel 
performance are explored. Performance profiling and analysis 
are presented.  
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I. INTRODUCTION 

The Minimum Spanning Tree (MST) problem is aimed at 
finding a least cost spanning tree in an edge weighted graph. 
The problem has been well studied and many efficient 
polynomial-time algorithms have been developed by Dijkstra, 
Kruskal, Prim [1, 2]. Finding of the MST is a task with a very 
wide application in the field of communication network 
design and communication network design problems. 

Genetic algorithms (GA) are part of evolutionary 
computation techniques, which is a rapidly growing area of 
artificial intelligence. GAs have been successfully applied in 
many research fields as biogenetics, computer science, 
engineering, economics, chemistry, manufacturing, 
mathematics, physics. 

The objective of this paper is to investigate the efficiency of 
parallel algorithms for finding minimum spanning tree in a 
graph. Prim’s algorithm and genetic Prim’s algorithm are 
regarded. Parallel computational models based on “manager-
worker” parallel programming paradigm are presented. The 
algorithms are implemented using parallel MPI program. The 
target parallel platform is a multicomputer. The impact of 
multicomputer size and computational workload on the 
parallel performance parameters are explored and 
performance profiling and analysis are presented. 

II. MINIMUM SPANNING TREE OF A GRAPH 

A. Prim’s algorithm 

Let’s consider undirected graph G = (V, E) where: 
 V = {v1, v2, …, vn} is a finite set of vertices; 
 E = {e1, e2, …, em} is a finite set of undirected edges. 

Each element ek ∈ E (k = 1, 2, …, m) is an ordered pair (vi, 
vj), vi, vj ∈ V, 1 ≤ i,  j ≤ n. 

A graph is weighted when a function f(i, j) relates an 
integer value (cost) to each edge (i, j) ∈ E with f(i, j) = f(j, i).  

Minimum spanning tree (MST) is a tree T(H, D) of the 
graph G with minimum sum of the weights of all edges 
included in the tree, where H is the set of vertices in the tree 
and D is the set of edges, connecting the vertices of the MST. 
Prim’s algorithm is iterative algorithm for finding MST. It 
runs (n-1) iterations for a graph with n vertices. A vertex 
connected with the vertices already added to the tree by an 
edge with a minimum weight is selected at each iteration. The 
procedure of building MST according to Prim’s algorithm is 
as follows: 

Start from an arbitrary vertex s: H = {s}, D = Ø 
Repeat (n–1) iterations 
 Choose edge (i, j) ∈ E such that 

 i ∈ H, j ∈ V/H and f(i, j) is minimum 
Include the vertex j in H and edge (i, j) in D 

B. Genetic algorithm of Prim  

Genetic algorithms (GA) are metaheuristic method for 
global search and optimization that mimics the evolution of 
life organisms. The tree main principles of the natural 
evolution are applied to the GA: reproduction with variation, 
natural selection based on fitness and repetition with 
diversification of the individuals expressed by differences 
between a population and the next one. GA utilizes a 
population of data structure, called chromosome. 
Chromosomes represent possible solution of the regarded 
problem. Each chromosome has a fitness which is a numerical 
value indicating the quality of the solution the chromosome 
represents. The GA selects chromosomes to survive or 
reproduce so that those with better fitness are more likely to 
be selected. Crossover, also called recombination, combines 
genetic information from two parent chromosomes. Mutation 
randomly modifies one parent chromosome. When enough 
offspring is generated the parents are replaced and the process 
continues so that chromosomes that represent better solutions 
evolve. 

GA algorithms are successfully applied to solve several 
graph and network problems including building of minimum 
spanning tree [3, 4, 5]. 

In order to apply genetic algorithm to the problem of 
finding MST the following issues are considered: 
 the GA will generate only MST of a given graph; 
 the correspondence between chromosomes and spanning 

tree will be 1:1; 
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 chromosomes’ coding, crossover and mutation operators 
will not depend on the problem size. 
Several spanning tree representations and chromosome 

encodings of the possible solution of MST of given graph for 
GA exists [6, 7, 8]. The coding of a spanning tree of a graph 
for GA is based on a representation of the spanning trees as 
strings of numerical weights associated with the graph’s 
vertices.  

The operations used for GA for finding of MST of given 
graph are as follows: 
 Initialization – in order to guarantee that the solution found 

by GA will be correct, a random population of trees is 
generated at the initialization stage of the GA algorithm. The 
generated trees have to be spanning trees of the given graph 
and in order to satisfy that requirement vertices and edges are 
added to the tree according to Prim’s algorithm but without 
observing the requirement that the edge added is minimal. The 
MST will be searched in the generated population of spanning 
trees. 
 Selection – the selection is performed based on the roulette 

wheel selection rule which states that parents are selected 
according to their fitness. The weight of each generated tree is 
calculated and the total sum of all weights of population is 
found. A random number is generated between 0 and the total 
sum of the weights in the population. 
 Crossover – for the crossover operator the following idea is 

applied: the solution after crossover has to inherit as many of 
the parents’ edges as possible. At first step the new spanning 
tree takes the edges that are common for both two parents. At 
the next step edges belonging to only one of the parents are 
checked if they can be included in the new solution without 
making cycles with the edges that have already been added. 
At this step edges are again randomly added to the new 
spanning tree as was during the initialization stage. The 
addition of edges stops when a full tree is built, i.e. the 
number of added edges is one less than the number of added 
vertices.  
 Mutation – mutation is based on addition of randomly 

selected edge and deletion of an edge that lies in the cycle 
between the added edge and the other tree edges, going out of 
the vertices when the edge was added. In brief the mutation 
stage is as follows: 

 a random edge connecting two vertices is selected to be 
added to the tree; 

 a set of edges that lie between the two vertices is 
constructed; the edges in this set together with the  new 
added edge make a cycle; 

 an edge from the cycle is selected to be deleted; 
 the new edge is selected while the old one is deleted. 

III. PARALLEL ALGORITHMS FOR MINIMUM 
SPANNING TREE 

A. Parallel computational model of Prim’s algorithm 

There are several possibilities for parallel calculations in 
the sequential Prim’s algorithm for finding MST of a graph on 
a multicomputer platform: 

 At each iteration of the algorithm finding the minimum 
weighted edge connecting a vertex not included in the 
spanning tree so far and a vertex that is part of the spanning 
tree – since the problem is solved utilizing several 
processors each processor can perform a local search for 
minimum weight edge only between part of the set of graph 
vertices and then by global reduction operation the global 
minimum is obtained. The result is the minimum weight of 
an edge to be added to the spanning tree at the current 
iteration. This edge connects two vertices – the first one is 
already part of the spanning tree built so far and the other 
one is the new added vertex. The processor that has found 
the minimum weight edge broadcasts the number of new 
added vertex to all other processors. 

 Preparation for the next iteration – update of the edges of 
minimum weight connecting each vertex not included in the 
spanning tree and the vertices in the spanning tree. Each 
processor works on a strip of the graph adjacency matrix 
and calculates the updated minimum weight edges for part 
of the vertices out of the spanning tree. 
Data decomposition is utilized for parallelization of the 

Prim’s algorithm for finding MST. The set of vertices, from 
which a vertex to be added to the current spanning tree is 
selected, is distributed among the parallel working processes. 
Utilization of data parallelism has the advantage of load 
balancing between the processors. Each of p parallel working 
processes operates on either ⎡n/p⎤ or ⎣n/p⎦ vertices of total n 
vertices in the graph. The upper and lower indices of the strip 
of each process are easily calculated. 

Parallel computational model of Prim’s algorithm for 
multicomputer platform is based on the parallel algorithmic 
paradigm “manager-worker” (fig.1). 

The manager process is responsible for the following 
activities: 
 Sends the graph adjacency matrix to all worker processes 

(function MPI_Bcast); 
 Sends the vertex number of the last vertex added to the 

spanning tree to all worker processes (function MPI_Bcast); 
 Gathers values of the minimum weight edges to a vertex 

from the spanning tree locally calculated by the worker 
processes (function MPI_Gather); 
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 Selects a vertex to be added to the current spanning tree on 
the base of the results received by the worker processes. 
Each worker process performs the following tasks: 

 Receives the graph adjacency matrix by the manager 
process (function MPI_Bcast); 

 Receives a vertex number of the last vertex added to the 
spanning tree (function MPI_Bcast); 

 Working on the local set of graph’s vertices, for each vertex 
determines an edge of a minimum weight connecting the 
vertex with a vertex in the spanning tree; 

 Sends the calculated values to the manager process 
(MPI_Scatter). 

B. Parallel computational model of genetic Prim’s algorithm 

Finding the solution of a specific problem by GA is 
inspired by the natural evolution and is a native parallel 
process that can be easily parallelized. Three main approaches 
of parallelizing GA exists: 
 Common population, parallel calculation of the cost 

function of each individual by a worker process and genetic 
operators performed by the manager process. This approach is 
useful when the calculation of cost function is time 
consuming. 
 Separation of the population into subpopulations and 

calculations for each subpopulation by a different process. 
This approach provides independent population evolution and 
thus higher diversification of the movements in the search 
space. 
 Distribution of the genetic operations to different processes. 

This approach is an extension to the above one since genetic 
operators are applied only to consecutive populations and thus 
high diversification of the individuals is kept. 

The purpose of parallelization of the GA algorithms is to 
reduce the time of finding the solution. 

The presented genetic Prim’s algorithm uses the third 
approach for parallelization. The crossover and mutation 
operators are carried out at the worker processes while initial 
population generation and selection are executed by the 
manager process. 

The parallel computational model of genetic Prim’s 
algorithm is based on parallel programming paradigm 
“manager-worker” (fig.2). 
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Fig.2. Parallel computational model of genetic Prim’s 

algorithm 

The manager process performs the following activities: 
 Sends the graph adjacency matrix to all worker processes 

(function MPI_Bcast); 
 Generates new population; 
 Performs selection operation to select a couple of parents 

for a crossover operator; 
 Sends the selected couple of parents to each worker process 

(function MPI_Send); 
 Waits for a result of the crossover by any worker process 

(MPI_Probe); 
 Receives the result from a worker process and sends to it 

new parents for crossover; 
 Gathers all results from all worker processes for a given 

population 
 Starts next population and repeats the above activities; 
 Sends termination signals to all worker processes when the 

above activities are completed for all populations; 
The tasks of each worker process are as follows: 

 Receives the graph adjacency matrix from the manager 
process (function MPI_Bcast); 

 Waits for a message from the manager process; 
 When a message from a manager is received checks if it 

contains termination signal and if so then terminates; 
 If the received message is not a termination signal interprets 

it as signal to start the crossover and mutation operators; 
 Receives a couple of parents by the manager process; 
 Performs the crossover of the two parents; 
 Sends the result to the manager process; 
 Waits for a new message; 
 Performs mutation; 
 Sends the result to the manager process. 

B. Experimental framework 

The experimental study of the parallel algorithms for 
finding MST described in the previous section is performed 
on multicomputer platform comprising 5 workstations (Intel 
Pentium IV 1.5GHz, 256MB RAM) connected by Fast 
Ethernet 100 Mbps switch. For the implementation of the 
algorithms Microsoft Visual Studio 2005 and MPICH-2 are 
used. 

The speedup and efficiency of Prim’s algorithm applied for 
finding MST of a graph with 1000 nodes are shown in fig.3 
and fig.4 respectively. Gantt’s diagram and communication 
transactions profiles of the Prim’s algorithm are shown in 
fig.5 and fig.6 respectively. 
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Fig.3. Speedup of parallel Prim’s algorithm for finding MST 

on multicomputer platform 
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Efficiency of Prim's algorithm
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Fig.4. Efficiency of parallel Prim’s algorithm  

 
Fig.5. Communication transactions profile of parallel Prim’s 

algorithm 

 
Fig.6. Gant’s diagram of parallel Prim’s algorithm 

The speedup and efficiency of genetic Prim’s algorithm 
applied for finding MST of a graph with 1000 nodes are 
shown in fig.7 and fig.8 respectively. Gantt’s diagram and 
communication transactions profiles of the genetic Prim’s 
algorithm are shown in fig.9 and fig.10 respectively. 
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Fig.7. Speedup of parallel genetic Prim’s algorithm 
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Fig.8. Efficiency of parallel genetic Prim’s algorithm  

The experimental results show almost linear speedup and high 
efficiency of the parallel calculations of MST using both 
Prim’s and genetic Prim’s algorithm. 

 

 
Fig.9. Communication transactions of parallel genetic Prim’s 

algorithm 

 
Fig.10. Gant’s diagram of parallel genetic Prim’s algorithm 

IV. CONCLUSION 

The paper investigates the efficiency of parallel Prim’s and 
parallel genetic Prim’s algorithms on multicomputer platform. 
Parallel computational models based on “manager-worker” 
parallel programming paradigm are presented. The algorithms 
are implemented using parallel MPI program. Experimental 
results show that both algorithm scale well with respect to the 
multicomputer size.  
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