

Efficiency of Parallel Graph Processing
on Multicomputer Platform
Plamenka Borovska1 and Milena Lazarova2

Abstract – The paper is aimed at investigation of parallel
algorithms for finding minimum spanning tree of a graph.
Prim’s algorithm and genetic Prim’s algorithms are regarded.
The impact of cluster size and workload on the parallel
performance are explored. Performance profiling and analysis
are presented.

Keywords – minimum spanning tree, genetic algorithm,
parallel computational model, multicomputer.

I. INTRODUCTION

The Minimum Spanning Tree (MST) problem is aimed at
finding a least cost spanning tree in an edge weighted graph.
The problem has been well studied and many efficient
polynomial-time algorithms have been developed by Dijkstra,
Kruskal, Prim [1, 2]. Finding of the MST is a task with a very
wide application in the field of communication network
design and communication network design problems.

Genetic algorithms (GA) are part of evolutionary
computation techniques, which is a rapidly growing area of
artificial intelligence. GAs have been successfully applied in
many research fields as biogenetics, computer science,
engineering, economics, chemistry, manufacturing,
mathematics, physics.

The objective of this paper is to investigate the efficiency of
parallel algorithms for finding minimum spanning tree in a
graph. Prim’s algorithm and genetic Prim’s algorithm are
regarded. Parallel computational models based on “manager-
worker” parallel programming paradigm are presented. The
algorithms are implemented using parallel MPI program. The
target parallel platform is a multicomputer. The impact of
multicomputer size and computational workload on the
parallel performance parameters are explored and
performance profiling and analysis are presented.

II. MINIMUM SPANNING TREE OF A GRAPH

A. Prim’s algorithm

Let’s consider undirected graph G = (V, E) where:
 V = {v1, v2, …, vn} is a finite set of vertices;
 E = {e1, e2, …, em} is a finite set of undirected edges.

Each element ek ∈ E (k = 1, 2, …, m) is an ordered pair (vi,
vj), vi, vj ∈ V, 1 ≤ i, j ≤ n.

A graph is weighted when a function f(i, j) relates an
integer value (cost) to each edge (i, j) ∈ E with f(i, j) = f(j, i).

Minimum spanning tree (MST) is a tree T(H, D) of the
graph G with minimum sum of the weights of all edges
included in the tree, where H is the set of vertices in the tree
and D is the set of edges, connecting the vertices of the MST.
Prim’s algorithm is iterative algorithm for finding MST. It
runs (n-1) iterations for a graph with n vertices. A vertex
connected with the vertices already added to the tree by an
edge with a minimum weight is selected at each iteration. The
procedure of building MST according to Prim’s algorithm is
as follows:

Start from an arbitrary vertex s: H = {s}, D = Ø
Repeat (n–1) iterations
 Choose edge (i, j) ∈ E such that

 i ∈ H, j ∈ V/H and f(i, j) is minimum
Include the vertex j in H and edge (i, j) in D

B. Genetic algorithm of Prim

Genetic algorithms (GA) are metaheuristic method for
global search and optimization that mimics the evolution of
life organisms. The tree main principles of the natural
evolution are applied to the GA: reproduction with variation,
natural selection based on fitness and repetition with
diversification of the individuals expressed by differences
between a population and the next one. GA utilizes a
population of data structure, called chromosome.
Chromosomes represent possible solution of the regarded
problem. Each chromosome has a fitness which is a numerical
value indicating the quality of the solution the chromosome
represents. The GA selects chromosomes to survive or
reproduce so that those with better fitness are more likely to
be selected. Crossover, also called recombination, combines
genetic information from two parent chromosomes. Mutation
randomly modifies one parent chromosome. When enough
offspring is generated the parents are replaced and the process
continues so that chromosomes that represent better solutions
evolve.

GA algorithms are successfully applied to solve several
graph and network problems including building of minimum
spanning tree [3, 4, 5].

In order to apply genetic algorithm to the problem of
finding MST the following issues are considered:
 the GA will generate only MST of a given graph;
 the correspondence between chromosomes and spanning

tree will be 1:1;

1Plamenka Borovska is with the Faculty of Computer Systems and
Control, Department of Computer Systems, 8 Kliment Ochridsky
str., 1756 Sofia, Bulgaria, E-mail: pborovska@tu-sofia.bg

2Milena Lazarova is with the Faculty of Computer Systems and
Control, Department of Computer Systems, 8 Kliment Ochridsky
str., 1756 Sofia, Bulgaria, E-mail: milaz@tu-sofia.bg

395

Efficiency of Parallel Graph Processing on Multicomputer Platform

 chromosomes’ coding, crossover and mutation operators
will not depend on the problem size.
Several spanning tree representations and chromosome

encodings of the possible solution of MST of given graph for
GA exists [6, 7, 8]. The coding of a spanning tree of a graph
for GA is based on a representation of the spanning trees as
strings of numerical weights associated with the graph’s
vertices.

The operations used for GA for finding of MST of given
graph are as follows:
 Initialization – in order to guarantee that the solution found

by GA will be correct, a random population of trees is
generated at the initialization stage of the GA algorithm. The
generated trees have to be spanning trees of the given graph
and in order to satisfy that requirement vertices and edges are
added to the tree according to Prim’s algorithm but without
observing the requirement that the edge added is minimal. The
MST will be searched in the generated population of spanning
trees.
 Selection – the selection is performed based on the roulette

wheel selection rule which states that parents are selected
according to their fitness. The weight of each generated tree is
calculated and the total sum of all weights of population is
found. A random number is generated between 0 and the total
sum of the weights in the population.
 Crossover – for the crossover operator the following idea is

applied: the solution after crossover has to inherit as many of
the parents’ edges as possible. At first step the new spanning
tree takes the edges that are common for both two parents. At
the next step edges belonging to only one of the parents are
checked if they can be included in the new solution without
making cycles with the edges that have already been added.
At this step edges are again randomly added to the new
spanning tree as was during the initialization stage. The
addition of edges stops when a full tree is built, i.e. the
number of added edges is one less than the number of added
vertices.
 Mutation – mutation is based on addition of randomly

selected edge and deletion of an edge that lies in the cycle
between the added edge and the other tree edges, going out of
the vertices when the edge was added. In brief the mutation
stage is as follows:

 a random edge connecting two vertices is selected to be
added to the tree;

 a set of edges that lie between the two vertices is
constructed; the edges in this set together with the new
added edge make a cycle;

 an edge from the cycle is selected to be deleted;
 the new edge is selected while the old one is deleted.

III. PARALLEL ALGORITHMS FOR MINIMUM
SPANNING TREE

A. Parallel computational model of Prim’s algorithm

There are several possibilities for parallel calculations in
the sequential Prim’s algorithm for finding MST of a graph on
a multicomputer platform:

 At each iteration of the algorithm finding the minimum
weighted edge connecting a vertex not included in the
spanning tree so far and a vertex that is part of the spanning
tree – since the problem is solved utilizing several
processors each processor can perform a local search for
minimum weight edge only between part of the set of graph
vertices and then by global reduction operation the global
minimum is obtained. The result is the minimum weight of
an edge to be added to the spanning tree at the current
iteration. This edge connects two vertices – the first one is
already part of the spanning tree built so far and the other
one is the new added vertex. The processor that has found
the minimum weight edge broadcasts the number of new
added vertex to all other processors.

 Preparation for the next iteration – update of the edges of
minimum weight connecting each vertex not included in the
spanning tree and the vertices in the spanning tree. Each
processor works on a strip of the graph adjacency matrix
and calculates the updated minimum weight edges for part
of the vertices out of the spanning tree.
Data decomposition is utilized for parallelization of the

Prim’s algorithm for finding MST. The set of vertices, from
which a vertex to be added to the current spanning tree is
selected, is distributed among the parallel working processes.
Utilization of data parallelism has the advantage of load
balancing between the processors. Each of p parallel working
processes operates on either ⎡n/p⎤ or ⎣n/p⎦ vertices of total n
vertices in the graph. The upper and lower indices of the strip
of each process are easily calculated.

Parallel computational model of Prim’s algorithm for
multicomputer platform is based on the parallel algorithmic
paradigm “manager-worker” (fig.1).

The manager process is responsible for the following
activities:
 Sends the graph adjacency matrix to all worker processes

(function MPI_Bcast);
 Sends the vertex number of the last vertex added to the

spanning tree to all worker processes (function MPI_Bcast);
 Gathers values of the minimum weight edges to a vertex

from the spanning tree locally calculated by the worker
processes (function MPI_Gather);

Worker

Manager

Worker

Worker

MPI_Bcast

adjacency matrix
MPI_B

cas
t

ad
jac

en
cy

 m
atr

ix

MPI_B
cas

t

las
t v

ert
ex

 ad
de

d

MPI_Bcast

last vertex added

M
PI

_B
ca

st
ad

ja
ce

nc
y

m
at

rix
M

PI
_B

ca
st

la
st

 v
er

te
x

ad
de

d

M
PI

_A
llr

ed
uc

e

m
in

 w
eig

ht
 ed

ge

MPI_Allreduce

min weight edge

MPI_Allre
duce

min weight edgeMPI_Allreduce

min weight edge

MPI_Allreduce
min weight edge

Fig.1. Parallel computational model of Prim’s algorithm

396

Plamenka Borovska and Milena Lazarova

 Selects a vertex to be added to the current spanning tree on
the base of the results received by the worker processes.
Each worker process performs the following tasks:

 Receives the graph adjacency matrix by the manager
process (function MPI_Bcast);

 Receives a vertex number of the last vertex added to the
spanning tree (function MPI_Bcast);

 Working on the local set of graph’s vertices, for each vertex
determines an edge of a minimum weight connecting the
vertex with a vertex in the spanning tree;

 Sends the calculated values to the manager process
(MPI_Scatter).

B. Parallel computational model of genetic Prim’s algorithm

Finding the solution of a specific problem by GA is
inspired by the natural evolution and is a native parallel
process that can be easily parallelized. Three main approaches
of parallelizing GA exists:
 Common population, parallel calculation of the cost

function of each individual by a worker process and genetic
operators performed by the manager process. This approach is
useful when the calculation of cost function is time
consuming.
 Separation of the population into subpopulations and

calculations for each subpopulation by a different process.
This approach provides independent population evolution and
thus higher diversification of the movements in the search
space.
 Distribution of the genetic operations to different processes.

This approach is an extension to the above one since genetic
operators are applied only to consecutive populations and thus
high diversification of the individuals is kept.

The purpose of parallelization of the GA algorithms is to
reduce the time of finding the solution.

The presented genetic Prim’s algorithm uses the third
approach for parallelization. The crossover and mutation
operators are carried out at the worker processes while initial
population generation and selection are executed by the
manager process.

The parallel computational model of genetic Prim’s
algorithm is based on parallel programming paradigm
“manager-worker” (fig.2).

MPI_Bcast

adjacency matrix

MPI_B
cas

t

ad
jac

en
cy

 m
atr

ix

MPI_S
en

d

co
up

le
of

pa
ren

ts

M
PI

_S
en

d
co

up
le

of
 pa

re
nt

s

MPI_Send

couple of parents

MPI_S
en

d

ch
ild M

PI
_S

en
d

ch
ild

M
PI

_B
ca

st

ad
jac

en
cy

 m
atr

ix MPI_Send
child

Fig.2. Parallel computational model of genetic Prim’s

algorithm

The manager process performs the following activities:
 Sends the graph adjacency matrix to all worker processes

(function MPI_Bcast);
 Generates new population;
 Performs selection operation to select a couple of parents

for a crossover operator;
 Sends the selected couple of parents to each worker process

(function MPI_Send);
 Waits for a result of the crossover by any worker process

(MPI_Probe);
 Receives the result from a worker process and sends to it

new parents for crossover;
 Gathers all results from all worker processes for a given

population
 Starts next population and repeats the above activities;
 Sends termination signals to all worker processes when the

above activities are completed for all populations;
The tasks of each worker process are as follows:

 Receives the graph adjacency matrix from the manager
process (function MPI_Bcast);

 Waits for a message from the manager process;
 When a message from a manager is received checks if it

contains termination signal and if so then terminates;
 If the received message is not a termination signal interprets

it as signal to start the crossover and mutation operators;
 Receives a couple of parents by the manager process;
 Performs the crossover of the two parents;
 Sends the result to the manager process;
 Waits for a new message;
 Performs mutation;
 Sends the result to the manager process.

B. Experimental framework

The experimental study of the parallel algorithms for
finding MST described in the previous section is performed
on multicomputer platform comprising 5 workstations (Intel
Pentium IV 1.5GHz, 256MB RAM) connected by Fast
Ethernet 100 Mbps switch. For the implementation of the
algorithms Microsoft Visual Studio 2005 and MPICH-2 are
used.

The speedup and efficiency of Prim’s algorithm applied for
finding MST of a graph with 1000 nodes are shown in fig.3
and fig.4 respectively. Gantt’s diagram and communication
transactions profiles of the Prim’s algorithm are shown in
fig.5 and fig.6 respectively.

Speedup of Prim's algorithm

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

2 3 4 5

Process#

Sp
ee

du
p

Fig.3. Speedup of parallel Prim’s algorithm for finding MST

on multicomputer platform

397

Efficiency of Parallel Graph Processing on Multicomputer Platform

Efficiency of Prim's algorithm

0%

20%

40%

60%

80%

100%

2 3 4 5

Process#

E
ffi

ci
en

cy

Fig.4. Efficiency of parallel Prim’s algorithm

Fig.5. Communication transactions profile of parallel Prim’s

algorithm

Fig.6. Gant’s diagram of parallel Prim’s algorithm

The speedup and efficiency of genetic Prim’s algorithm
applied for finding MST of a graph with 1000 nodes are
shown in fig.7 and fig.8 respectively. Gantt’s diagram and
communication transactions profiles of the genetic Prim’s
algorithm are shown in fig.9 and fig.10 respectively.

Speedup of genetic Prim's algorithm

0
0.5

1
1.5

2
2.5

3
3.5

4

2 3 4 5

Process#

Sp
ee

du
p

Fig.7. Speedup of parallel genetic Prim’s algorithm

Efficiency of genetic Prim's algorithm

0.68

0.7

0.72

0.74

0.76

0.78

0.8

2 3 4 5

Process#

E
ffi

ci
en

cy

Fig.8. Efficiency of parallel genetic Prim’s algorithm

The experimental results show almost linear speedup and high
efficiency of the parallel calculations of MST using both
Prim’s and genetic Prim’s algorithm.

Fig.9. Communication transactions of parallel genetic Prim’s

algorithm

Fig.10. Gant’s diagram of parallel genetic Prim’s algorithm

IV. CONCLUSION

The paper investigates the efficiency of parallel Prim’s and
parallel genetic Prim’s algorithms on multicomputer platform.
Parallel computational models based on “manager-worker”
parallel programming paradigm are presented. The algorithms
are implemented using parallel MPI program. Experimental
results show that both algorithm scale well with respect to the
multicomputer size.

REFERENCES

[1] Prim R., Shortest Connection Networks and Some
Generalizations, Bell System Technical Journal, Vol.36,
pp.1389÷1401, 1957.

[2] Kruskal J., On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem, Proc. of the American
Mathematics Society, Vol.7, No.1, pp.48÷50, 1956.

[3] Zhou G., M. Gen, Genetic Algorithm Approach on Multi-
Criteria Minimum Spanning Tree Problem, European Journal of
Operational Research, Vol.114, No.1, 1999.

[4] Hanr L., Y. Wang, A Novel Genetic Algorithm for Degree-
Constrained Minimum Spanning Tree Problem, IJCSNS
International Journal of Computer Science and Network
Security, Vol.6, No.7A, pp.50÷57, 2006.

[5] Lin L., M. Gen, Node-Based Genetic Algorithm for
Communication Spanning Tree Problem, IEICE Transactions on
Communications, E89-B, pp.1091÷1098, 2006.

[6] Palmer C., A. Kershenbaum, Representing Trees in Genetic
Algorithms, Proc of the First IEEE Conference on Evolutionary
Computation, pp.379÷384, Orlando, FL, 1994.

[7] Raidl G., B. Julstrom, A Weighted Coding in a Genetic
Algorithm for the Degree-Constrained Minimum Spanning Tree
Problem, 2000 ACM Symposium on Applied Computing,
Como, Italy, 2000.

[8] Julstrom B., Codings and Operators in Two Genetic Algorithms
for the Leaf-Constrained Minimum Spanning Tree Problem,
International Journal on Applied Mathematics and Computer
Science, Vol.14, No.3, pp.385÷396, 2004.

398

