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Abstract -  The paper examines the parallel execution of the Fast 
Fourier Transformation (FFT) computations in a multiprocessor 
system with shared data memory. The multiprocessor system is 
designed and implemented on a FPGA – chip.  Some experimental 
results – the speed-up of parallel FFT execution and the amount of 
occupied FPGA-resources for different number of processors in 
the system are exposed. 
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I. INTRODUCTION. THE FFT COMPUTATION. 

The Fast Fourier Transform (FFT) [1] is essentially a 
computationally efficient algorithm for extracting spectral 
information from signal waveforms, which may be in real time 
or recorded form (i.e. a transformation from the time domain to 
the frequency domain). It is often used to dramatic effect in a 
growing range of applications including radar and sonar 
processing, speech recognition and image processing.  

According to the FFT transform, the underlying computation 
for the spectral representation of a signal with N 
samples(points)  can be expressed as: 
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Equations (1) and (2) represent the basic computational 
requirements for the FFT algorithm and are commonly known 
as the “butterfly” macro-operation due to the sample of the flow 
graph often used to represent the this operation, as illustrated in 
Figure 1.  The arguments and the results in these equations are 
complex numbers. The circle in the butterfly graph notes a 
complex adding operation, when the result line is upwards  and 
notes a complex subtracting operation, when the result line is 
downwards.  
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Fig.1. Flow graph, representing a “butterfly” FFT macro-
operation 

The arrow line notes a complex multiplying operation with 

multiplier (factor) 
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operation is a FFT for a signal with 2 samples (points). We 
find, that it requires  one complex multiplication, one 
complex addition and one complex subtraction. Since the 
multiplications and additions of the FFT algorithm are 
complex, the algorithm is ideally suited to handle complex 
input sequences. In transforming real data sequences an 
additional computational saving can be realized by combining 
two real N-point sequences into a single N-point complex 
sequence. 

The operations on real and imaginary parts of numbers 
according to the butterfly of Figure 1 are shown in flow graph 
of Figure 2.  In Figure 2 the symbols  R1, R2, X1, X2, Y1, Y2, 
W1, W2 mean the real and imaginary parts of complex 

numbers .,,,
....

WYXR  Using the butterflies with the 
appropriate factors Wk , any N- point FFT can be designed.  

Figure 3 shows the flow graph of the 16- point FFT. This 
computational task requires execution of 32 butterfly macro-
operations, arranged in four passes and each butterfly 
includes the operations, presented in flow graph of Figure 2 – 
four multiplications, three additions and three subtractions.  

 

Fig.2. Flow graph, representing the “butterfly” FFT 
operations on real and imaginary parts of numbers 
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Fig.3. Flow graph of the 16-point FFT 

II. MULTIPROCESSOR SYSTEM, USED FOR 
PARALLEL FFT IMPLEMENTATION 

The high – level block diagram of a multiprocessor 
system, designed and implemented on a Field 
Programmable Gate Array (FPGA) chip is shown on the 
Figure 4. The system consists of several processor modules 
(controller KCPSM3 + FFT accelerator) and common 
shared data memory, used for read and write processor 
operations by means of memory arbiter.  

In accordance with Flinn’s taxonomy this parallel 
computer architecture is classified in MIMD category - 
each processor module executes its own instructions and 
operates on its own data [2]. The system presents a 
symmetric multiprocessor (SMP), because all the data 
memory is in one block and has the same access time from 
every processor module. 

The memory arbiter block contains a control logic that 
allows access to shared memory and solves collisions in 
case of simultaneous access.  The arbiter accepts requests 
from each processor module and arbitrates which one is 
granted access to the shared memory at any time. Each 
processor module initiates a memory request signal by its 
I/O logic device when it wants access to the shared 
memory and deactivates it when finished. If more than one 
processor requests the memory at the same time, access is 
granted by using “round robin” priority access algorithm. 

The block diagram of a system processor module is shown 
on the Figure 5. We use the KCPSM3 controller and the 
PicoBlaze processor (processor core) in it, designed by Xilinx. 
The processor core is delivered as synthesizable VHDL 
source code. PicoBlaze executes code (program for FFT 
implementation in this instance) from it’s own program 
memory.  
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Fig.4. Block diagram of the multiprocessor system 

  
Fig.5.Block diagram of the processor module 

 

The FFT accelerator block is a specialized coprocessor for 
FFT   butterfly  implementation.    It executes   the   butterfly 
operations (shown on Figure 2) in pipeline mode with three 
pipeline stages [3]. 

Under instruction of PicoBlaze processor, the accelerator 
reads the butterfly operands and writes the butterfly results in 
the shared memory, avoiding the processor. Thus, the FFT 
computation speed grows. The PicoBlaze processors generate 
the operand and result addresses in the shared memory, only. 

The organization of the parallel FFT execution is shown by 
the flow graph on the Figure 3.  The processor modules 
(marked by Pr# on the graph) execute in parallel the 
butterflies of every task pass.  The barrier synchronization 
is used by the multiprocessor system for this parallel 
execution [4]. That sort of synchronization guarantees, that no 
butterfly execution will proceed beyond any pass end, called 
the barrier, until every other butterfly execution in this pass 
has reached the barrier. 

The multiprocessor system is designed, simulated and 
implemented on  Xilinx FPGA – chips of  Spartan3E family 
by means of WebPACK design environment, simulator 
ModelSym and VHDL source code. Figure 6 shows the chip 
area utilization (FPGA-chip xc3s500e) for a four-processor 
system. 

 
Fig.6. Four-processor system on FPGA-chip 

III. EXPERIMENTAL  RESULTS.  

We have examined the parallel FFT implementation in 
multiprocessor systems on FPGA-chips with different number 
of processors. It is well-known, that the common shared 
memory is a “bottleneck” in shared memory systems. For that 
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reason, we have examined systems with different number of 
ports (one, two, four).  Some of the important results of our 
investigations are shown on Figures 7-9. 
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Fig.7. Multiprocessor speed-up as function of processor 

number and memory port number  
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Fig.8. Number of occupied FPGA logic  blocks as function 

of processor number 

 
The results of our investigations are obtained by program 

and hardware simulation, parameter calculations, graphical 
and text documents of design environment working. 
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Fig.9. Number of occupied FPGA memory and multiplier 

blocks as function of processor number 

IV. ANALYSIS  OF RESULTS. CONCLUSION 

Speed-up (the ratio between sequential FFT execution time 
of single processor and parallel execution time of 
multiprocessor) is probably the most important parameter of 
the multiprocessor system effectiveness. The results of Figure 
7 suggest, that the processor number growth is low effective 
for more than 4-6 processors in the system (saturation 
threshold). Figure 8 and Figure 9 show, that the amount of 
occupied FPGA resources continue to grows, though. 

In conclusion, we consider, that the results, exposed in this 
paper, will be useful to designers of Systems-On-Chip and 
Digital Signal Processing.  
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