

Parallel FFT Implementation on FPGA
Plamenka I. Borovska and Petyr G. Manoilov

Abstract - The paper examines the parallel execution of the Fast
Fourier Transformation (FFT) computations in a multiprocessor
system with shared data memory. The multiprocessor system is
designed and implemented on a FPGA – chip. Some experimental
results – the speed-up of parallel FFT execution and the amount of
occupied FPGA-resources for different number of processors in
the system are exposed.

Keywords – Fast Fourier Transformation, Butterfly,
Multiprocessor System, Field Programmable Gate Array.

I. INTRODUCTION. THE FFT COMPUTATION.

The Fast Fourier Transform (FFT) [1] is essentially a
computationally efficient algorithm for extracting spectral
information from signal waveforms, which may be in real time
or recorded form (i.e. a transformation from the time domain to
the frequency domain). It is often used to dramatic effect in a
growing range of applications including radar and sonar
processing, speech recognition and image processing.

According to the FFT transform, the underlying computation
for the spectral representation of a signal with N
samples(points) can be expressed as:

N
kj

kkk eYXR
π2... −

+= , 1
2

0 −≤≤
Nk (1)

and
()22

2

.

2

.. Nk
N

j
NkNkk eYXR

−−
−− −=

π

, .

1
2

−≤≤ NkN . (2)

Equations (1) and (2) represent the basic computational
requirements for the FFT algorithm and are commonly known
as the “butterfly” macro-operation due to the sample of the flow
graph often used to represent the this operation, as illustrated in
Figure 1. The arguments and the results in these equations are
complex numbers. The circle in the butterfly graph notes a
complex adding operation, when the result line is upwards and
notes a complex subtracting operation, when the result line is
downwards.

Plamenka I. Borovska, PhD, is with the Technical University of

Sofia, Faculty of Computer Science and Control, 8 boul.
“Kl.Ohridski”, Sofia, 1756, Bulgaria, E-mail: pborovska@tu-
sofia.bg

Petyr G. Manoilov, PhD, is with the Technical University of
Sofia, Faculty of Computer Science and Control, 8 boul.
“Kl.Ohridski”, Sofia, 1756, Bulgaria, E-mail: p.manoilov@mail.bg.

Fig.1. Flow graph, representing a “butterfly” FFT macro-
operation

The arrow line notes a complex multiplying operation with

multiplier (factor)
k

N
jk eW
π2

−
= .A single butterfly macro-

operation is a FFT for a signal with 2 samples (points). We
find, that it requires one complex multiplication, one
complex addition and one complex subtraction. Since the
multiplications and additions of the FFT algorithm are
complex, the algorithm is ideally suited to handle complex
input sequences. In transforming real data sequences an
additional computational saving can be realized by combining
two real N-point sequences into a single N-point complex
sequence.

The operations on real and imaginary parts of numbers
according to the butterfly of Figure 1 are shown in flow graph
of Figure 2. In Figure 2 the symbols R1, R2, X1, X2, Y1, Y2,
W1, W2 mean the real and imaginary parts of complex

numbers .,,,
....

WYXR Using the butterflies with the
appropriate factors Wk , any N- point FFT can be designed.

Figure 3 shows the flow graph of the 16- point FFT. This
computational task requires execution of 32 butterfly macro-
operations, arranged in four passes and each butterfly
includes the operations, presented in flow graph of Figure 2 –
four multiplications, three additions and three subtractions.

Fig.2. Flow graph, representing the “butterfly” FFT
operations on real and imaginary parts of numbers

399

mailto:pborovska@tu-sofia.bg
mailto:pborovska@tu-sofia.bg

Parallel FFT Implementation on FPGA

Fig.3. Flow graph of the 16-point FFT

II. MULTIPROCESSOR SYSTEM, USED FOR
PARALLEL FFT IMPLEMENTATION

The high – level block diagram of a multiprocessor
system, designed and implemented on a Field
Programmable Gate Array (FPGA) chip is shown on the
Figure 4. The system consists of several processor modules
(controller KCPSM3 + FFT accelerator) and common
shared data memory, used for read and write processor
operations by means of memory arbiter.

In accordance with Flinn’s taxonomy this parallel
computer architecture is classified in MIMD category -
each processor module executes its own instructions and
operates on its own data [2]. The system presents a
symmetric multiprocessor (SMP), because all the data
memory is in one block and has the same access time from
every processor module.

The memory arbiter block contains a control logic that
allows access to shared memory and solves collisions in
case of simultaneous access. The arbiter accepts requests
from each processor module and arbitrates which one is
granted access to the shared memory at any time. Each
processor module initiates a memory request signal by its
I/O logic device when it wants access to the shared
memory and deactivates it when finished. If more than one
processor requests the memory at the same time, access is
granted by using “round robin” priority access algorithm.

The block diagram of a system processor module is shown
on the Figure 5. We use the KCPSM3 controller and the
PicoBlaze processor (processor core) in it, designed by Xilinx.
The processor core is delivered as synthesizable VHDL
source code. PicoBlaze executes code (program for FFT
implementation in this instance) from it’s own program
memory.

400

Plamenka I. Borovska and Petyr G. Manoilov

Fig.4. Block diagram of the multiprocessor system

Fig.5.Block diagram of the processor module

The FFT accelerator block is a specialized coprocessor for
FFT butterfly implementation. It executes the butterfly
operations (shown on Figure 2) in pipeline mode with three
pipeline stages [3].

Under instruction of PicoBlaze processor, the accelerator
reads the butterfly operands and writes the butterfly results in
the shared memory, avoiding the processor. Thus, the FFT
computation speed grows. The PicoBlaze processors generate
the operand and result addresses in the shared memory, only.

The organization of the parallel FFT execution is shown by
the flow graph on the Figure 3. The processor modules
(marked by Pr# on the graph) execute in parallel the
butterflies of every task pass. The barrier synchronization
is used by the multiprocessor system for this parallel
execution [4]. That sort of synchronization guarantees, that no
butterfly execution will proceed beyond any pass end, called
the barrier, until every other butterfly execution in this pass
has reached the barrier.

The multiprocessor system is designed, simulated and
implemented on Xilinx FPGA – chips of Spartan3E family
by means of WebPACK design environment, simulator
ModelSym and VHDL source code. Figure 6 shows the chip
area utilization (FPGA-chip xc3s500e) for a four-processor
system.

Fig.6. Four-processor system on FPGA-chip

III. EXPERIMENTAL RESULTS.

We have examined the parallel FFT implementation in
multiprocessor systems on FPGA-chips with different number
of processors. It is well-known, that the common shared
memory is a “bottleneck” in shared memory systems. For that

401

Parallel FFT Implementation on FPGA
reason, we have examined systems with different number of
ports (one, two, four). Some of the important results of our
investigations are shown on Figures 7-9.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 3 4 5 6 7 8

number of processors in system

sp
ee

d-
up

quadriple-port shared memory system
double-port shared memory system
single-port shared memory system

Fig.7. Multiprocessor speed-up as function of processor

number and memory port number

0,00
500,00

1000,00
1500,00
2000,00
2500,00
3000,00
3500,00

number of
occupied

FPGA logic
blocks

1 2 3 4 5 6 7 8

number of processors in
system

number of occupied FPGA-slices outside processors
number of occupied FPGA-slices for processors

Fig.8. Number of occupied FPGA logic blocks as function

of processor number

The results of our investigations are obtained by program

and hardware simulation, parameter calculations, graphical
and text documents of design environment working.

0,00

10,00

20,00

30,00

40,00

50,00

number of
occupated
multiplier
and RAM
blocks

1 2 3 4 5 6 7 8

number of processors in system

number of occupied FPGA program and local data
memory blocks
number of occupied FPGA shared memory blocks

number of occupied FPGA multiplier blocks

Fig.9. Number of occupied FPGA memory and multiplier

blocks as function of processor number

IV. ANALYSIS OF RESULTS. CONCLUSION

Speed-up (the ratio between sequential FFT execution time
of single processor and parallel execution time of
multiprocessor) is probably the most important parameter of
the multiprocessor system effectiveness. The results of Figure
7 suggest, that the processor number growth is low effective
for more than 4-6 processors in the system (saturation
threshold). Figure 8 and Figure 9 show, that the amount of
occupied FPGA resources continue to grows, though.

In conclusion, we consider, that the results, exposed in this
paper, will be useful to designers of Systems-On-Chip and
Digital Signal Processing.

REFERENCES

[1] Bowen B., W. Brown, “VLSI Systems Design for Digital Signal
Processing”, Prentice-Hall, 1982.

[2] El-Rewini H., M. Abd-El-Barr, “Advanced Computer
Architecture and Parallel Processing” John Wiley & Sons, 2005.

[3] Fleury M., A. Downton , “Pipelined Processor Farms –
Structured design for embedded parallel systems”, John Wiley
& Sons,2001.

[4] Kamburov G., P.Manoilov, P. Zaykov, P. Borovska, “Parallel
Architecture Implemented in FPGA Based on Shared Memory
System”, Third International Scientific Conference
COMPUTER SCIENCE, Conference Proceedings, pp.96-101,
Instanbul, Turkey, 2006.

402

