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Abstract – There are specific requirements to Data Base 
Management Systems (DBMS) for multimedia data support. 
Conventional index structures are designed for storage and 
retrieval of conventional data. They have demonstrated some 
limitations in the case of multimedia data. B-tree index 
structures are more appropriate for storage and retrieval of 
multidimensional data. 
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I. INTRODUCTION 

Conventional index structures are one dimensional, in sense 
that they assume a single search key, and they retrieve records 
that match a given search key value. There are applications 
that view data as existing in a 2-dimensional space, or even in 
higher dimensions. This kind of applications are hardly 
supported by conventional DBMS, instead specialized 
systems are designed for multidimensional applications. One 
important way in which these specialized systems distinguish 
themselves is by using data structures that support certain kind 
of queries that are not common in SQL applications. 

Geographic Information Systems (GIS) are typical example 
of multidimensional applications. They store its objects 
(points or shapes) in two-dimensional space. These databases 
are maps, where the stored objects represents houses, roads, 
bridges, pipelines, and other physical objects. 

The queries used in GIS are not typical of SQL queries, 
although many of them can be expressed in SQL. These 
queries can be classified as follow: 
• Partial match queries. Values are specified for one or 

more dimensions and DBMS has to search for all 
points matching those values in those dimensions. 

• Range queries. Ranges are given for one or more of 
the directions, and DBMS search for the set of points 
within those ranges. Shapes can be searched partially 
or wholly within the range. 

• Nearest-neighbor queries. DBMS search for the 
closest point to a given point. 

• Where am I queries? DBMS search for shapes in 
which a given point is located. 

There are four tree-like structures useful for range queries 
or nearest neighbor queries on multidimensional data: 

1. Multi-key indexes. 

2. kd-trees. 
3. Quad trees. 
4. R-trees. 
1-3 are intended for sets of points. The last one is 

commonly used to represent sets of regions, but is also useful 
for points. 

II. MULTIPLE-KEY INDEXES 

In this case, several attributes are representing the data 
points. A simple tree-like scheme for accessing these points is 
an index of indexes, or more generally a tree in which the 
nodes at each level are indexes for one attribute. 

In Fig. 1 the idea is illustrated for the case of two attributes. 
The “root of the tree” is an index for the first of the two 
attributes. This index could be any type of conventional index, 
such as a B-tree or a hash table. The index associates with 
each of its search-key values a pointer to another index. If V is 
a value of the first attribute, then the index which is returned 
by following key V and its pointer is an index into the set of 
points that have V for their value in the first attribute and any 
value for the second attribute. 

 
Fig. 1. Nested indexes on different keys 

 
In a multiple-key index, some of the second or higher rank 

indexes may be very small. Thus, it may be appropriate to 
implement these indexes as simple tables that are packed 
several to a block. 

Partial-match queries. If the first attribute is specified, 
then the access is quite efficient, all what have to be done is to 
find the one subindex that leads to the desired points. If the 
root is a B-tree index, then two or three disk I/O’s have to be 
done to get the proper subindex and then to use whatever 
I/O’s are needed to access all of that index and the points of 
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the data file itself. If the first attribute does not have a 
specified value, then every subindex have to be searched, a 
potentially time-consuming process. 

Range queries. The multiple-key index works quite well 
for a range query provided the individual indexes themselves 
support range queries on their attribute. To answer a range 
query, root index has to be used and the range of the first 
attribute to find all of the subindexes that might contain 
answer points. Then each of these subindexes has to be 
searched using the range specified for the second attribute. 

Nearest-neighbor queries. To find the nearest neighbor of 
point (x0, y0), a distance d has to be find first, such that several 
points are expected to be within distance d of point (x0, y0). 
After that the range query can be applied: x0 – d ≤ x ≤ x0 + d 
and y0 – d ≤ y ≤ y0 + d. If there are no points in this range, or 
if there is a point, but distance from (x0, y0) of the closest 
point is greater than d, then the range has to be increased and 
search repeated. Search can be ordered so that the closest 
places are searched first. 

III. KD-TREES 

kd-tree is generalization of the binary search tree to 
multidimensional data. It is a main-memory data structure. A 
kd-tree is a binary tree in which interior nodes have an 
associated attribute a and a value V that splits that data points 
into two parts: those with a-value less than V and those with 
a-value equal or greater than V. The attributes at different 
levels of the tree are different, with levels rotating among the 
attributes of all dimensions. In the classical kd-tree, the data 
points are placed at the nodes, but for the sake of block model 
of storage two modifications are done: 

1. Interior nodes have only an attribute, a dividing 
value for that attribute, and pointers to left and 
right children. 

2. Leaves are blocks, with space for as many records 
as a block can hold. 

An example of kd-tree is presented in Fig. 2. There are two 
dimensions (Speed and Age), which are alternatively splitting 
data points at each level. Leaves contain data points and they 
can be placed at each level of the kd-tree. 

For the lookup values for all dimensions could be given. A 
lookup of a tuple is performed as in a binary search tree. At 
every interior node the search is redirected to a subtree which 
is possible to contain a leaf with the tuple. 

Insertion starts as lookup to find the leaf. If the block of the 
leaf has enough room – the new data point is inserted. If there 
is no room, the block is divided into two new blocks. Content 
of the block is distributed into the new two blocks using the 
attribute corresponding to the leaf level. New interior node is 
created whose children are the two new blocks. In the new 
interior node the splitting value is put. 

Partial-match queries. If values are given for some of the 
attributes, then at every level belonging to attribute whose 
value is known search direction is clear. If there is no value 
for the attribute at a node, then both its children have to be 
explored. 

Range queries. Sometimes, a range will allow search 
direction to be directed only to one child of a node, but if the 

range straddles the splitting value at the node, then both 
children have to be explored. 

Nearest-neighbor queries. They are executed in the same 
way as in the case of multiple-key indexes. 

 
Fig. 2. A kd-tree with two dimensions 

 
Adapting kd-trees to secondary storage. Let kd-tree with 

n leaves is stored in a file. Then the average length of a path 
from the root to a leaf will be about log2 n, as for any binary 
tree. If each node is stored in a block, then to traverse a path 
one disk I/O per node must be done, which in summary is 
more than for the typical B-tree. In addition, since interior 
nodes of kd-tree have relatively little information, most of the 
block would be wasted space. The twin problems of long 
paths and unused space cannot be solved completely, but there 
are two approaches that will make some improvements in 
performance: 

• Multiway branches at interior nodes. Interior 
nodes of a kd-tree could look more like B-tree 
nodes with many key-pointers pairs. If a node 
contains n keys, then values of an attribute could 
be split into n + 1 ranges. If there are n + 1 
pointers, then could be followed appropriate one to 
a subtree that contain only points with attribute in 
that range. Problems are when reorganization of 
the nodes has to be done, in order to keep 
distribution and balance. 

• Group interior nodes into blocks. In this 
approach the tree nodes have only two children, 
but many interior nodes are packed into single 
block. In order to minimize the number of block 
that have to be read from disk while traveling 
down one path, the best is to include in one block 
a node and all its descendants for some number of 
levels. That way, once the block with this node is 
retrieved, it is possible to use some additional 
nodes on the same block, saving disk I/O’s. 

IV. QUAD TREES 

In quad tree, each interior node corresponds to a square 
region in two dimensions, or to a k-dimensional cube in k 
dimensions. If the number of points is no larger than what will 
fit  in a block, then this square is a leaf of the tree, and it is 
represented by the block that hold its points. If there are too 
many points to fit in one block, then the square is an interior 
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node, with children corresponding to its four quadrants. See 
Fig. 3 for an example of quad tree. 

 
Fig.3. A quad tree 

 
Since interior nodes of a quad tree in k dimensions have 2k 

children, there is a range of k where nodes fit conveniently 
into blocks. However, for the 2-dimensional case, the situation 
is not much better than for the kd-tree; an interior node has 
four children. In quad tree splitting point for a node has to be 
the centre of a quad-tree region, which may or may not divide 
the point in that region evenly. When the number of 
dimensions is large many null pointers in the interior node 
could be found. In this case, only non-null pointers can be 
represented. 

Standard operations on quad tree resemble those for kd-
tree. 

V. R-TREES 

An R-tree (region tree) is a data structure that captures 
some of the spirit of a B-tree for multidimensional data. B-tree 
node has a set of keys that divide a line into segments. Points 
along that line belong to only one segment and it is easy to 
determine a unique child of that node where the point could be 
found. 

An R-tree represents data that consists of 2-dimensional or 
higher-dimensional regions, which are called data regions. An 
interior node of an R-tree corresponds to some interior 
region, which not normally a data region. The region can be of 
any shape, but in practice it is usually rectangle or other 
simple shape. The R-tree node has, in place of keys, 
subregions that represent the contents of its children. The 
subregions are not needed to cover entire region, which 
satisfactory as long as all the data regions that lie within the 
region are wholly contained within one of the subregions. The 
subregions are allowed to overlap, although it is desirable to 
keep the overlap small. An R-tree for a map is presented in 
Fig. 4. 

R-tree is useful for “where-am-I” queries, which specify a 
point P and asks for the data regions in which the point lies. 
Search starts from the root, with which the entire region is 
associated. The subregions at the root are examined to 
determine which children of the root correspond to interior 
regions that contain point P. 

If there are zero regions, then P is not any data region. If 
there is at least one interior region that contains P, then P must 
be recursively searched at the child corresponding to each 
such region. When one or more leaves are reached, then actual 
data regions should be found or a pointer to that record. 

 
Fig. 4. An R-tree for a map 

 
When new region R into R-tree should be inserted, 

procedure starts from the root and looks subregion into which 
R fits. If there is more than one such region, then one of them 
is picked and process is repeated there. If there is no 
subregion that contains R, then one of the subregions has to be 
expanded. Which one to pick may be difficult decision. Idea is 
to expand regions as little as possible, children’s subregions 
have to be asked to increase their area as little as possible, 
change the boundary of that region to include R, and 
recursively insert R at the corresponding child. 

Eventually, a leaf is reached where region R is inserted. If 
there is no room for R at that leaf, then the leaf must be 
divided. The new two subregions have to be as small as 
possible, but they have to cover all the data regions of the 
original leaf. Having split the leaf, the region is replaced and 
pointer for the original leaf at the node above is replaced too 
by a pair of regions and pointers corresponding to the two new 
leaves. If there is a room in the parent, process is finished. 
Otherwise, recursively nodes are divided going up the tree. 

VI. BITMAP INDEXES 

In this index structure file records have permanent numbers 
and there is some data structure that is used easy to find 
record by their numbers. Such a structure can be a 
conventional index on the data file, but in the data file there is 
no need to support key field (the record number). 

A bitmap index for a field F is a collection of bit-vectors 
of length n, one for each possible value that may appear in the 
field F. The vector for value v has 1 in position i if the record 
with that number has v in field F, and has 0 there if not. 

Bitmap indexes require too much space, when there are 
many different values for a field, since the total number of bits 
is the product of the number of records and the number of 
values. That is why, compression has to be used. 

Bitmap indexes have management problems, but they 
answer partial-match queries very efficiently in many 
situations. They can also help answer range queries. These 
kind of queries are supported by using AND/OR operations 
with bitmap-vectors. 

Let bitmap index on field F of a file has n records, and there 
are m different values for field F that appear in the file. Then 
the number of bits in all the bit-vectors for this index is mn. 
This number can be small compared to the size of the file 
itself, but the larger m is, the more space the bitmap index 
takes. 

But if m is large, then 1’s in a bit-vector will be rare - the 
probability that any bit is one is 1/m. If 1’s are rare, then bit-
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vectors can be encoded to take much fewer than n bits on the 
average. Run-length encoding approach is encoding 
sequence of i 0’s followed by a 1 (a run), by some suitable 
encoding of the integer i. The codes for each run are 
concatenated together, and that sequence of bits is the 
encoding of the entire bit-vector. 

Representing the integer i as a binary number do not work, 
because there is no way to divide the concatenated encoded 
bit-vector on runs. So, the encoding of run length must be 
more complex. There are many encoding schemas, but they 
work well only when typical runs are very long. Such a 
schema uses the number of bits j needed to represent in binary 
the number i. This number j is approximately log2i, and is 
represented by j - 1 1’s and a single 0. 

Concatenated sequence of above mentioned codes easy can 
be divided into j codes and then original vector can be 
recovered. For that purpose are used 0’s as separators – every 
j-code is a sequence of 1’s ending with 0. 

Every bit-vector so decoded will end in 1, and any trailing 
0’s will not be recovered, but the number of records in the file 
is known, so additional 0’s can be added. Since 0 in a bit-
vector indicates the corresponding record is not in the 
described set, then trailing 0’s can be ignored. 

Let m = n, i.e., each value for the filed on which bitmap 
index is constructed, has a unique value. The code for a run of 
a length i have about 2log2i bits. If each bit-vector has a single 
1, then it has a single run, and the length of that run cannot be 
longer than n. Thus, 2log2n bits are an upper bound on the 
length of a bit-vector’s code in this case. Since there are n bit-
vectors in the index (m = n), the total number of bits to 
represent the index is at most 2log2n. Without the encoding n2 
bits would be required. 

Because only one run can be decoded at a time, operations 
(AND/OR) on bitmap-vectors can be interleaved with 
decoding at runtime. 

Bit-vectors can be indexed with secondary indexes on 
values of the vector field, but instead value – a pointer to the 
bit-vector can be used. Bit-vectors can be packed in blocks of 
index data file, but if they are very long they can cross block 
boundaries in a chain of blocks. 

There are two aspects to the problem reflecting data-file 
modifications in a bitmap index: 

1. Record numbers must remain fixed once 
assigned. 

2. Changes to the data file require the bit map 
index to change as well. 

When a record is deleted its number is not used again and 
in the data file a “tombstone” is put. This is a consequence of 
point 1. The bitmap index must also be changed – for record 
position in all bit-vectors 0 has to be put. 

When a new record is inserted, the next number is assigned 
to it. This means that next available number has to be 
supported persistently. In all bit-vectors at the end 1 has to be 
added where this is appropriate. Technically, 0 must be added 
too, but this operation can be postponed till next insertion of 
new record with a value in the corresponding field. 

Modification a record will influence bit-vectors – value of 1 
has to be changed to 0 and vice versa where is appropriate. 

Bit-vectors for new values have to be created, as in the case of 
insertion of new records. 

VII. CONCLUSION 

Above presented data structure are goods tools for effective 
storage and retrieve of persistent multimedia data. Some of 
them are used in currently available DBMS, but others are 
used only in specialized systems. Our intension is to extent an 
open source DBMS like MySQL with some of these indexed 
data structure for the support effectively and efficiently search 
and retrieval of multimedia data. 

These data structures are at the physical level of an 
implementation of multimedia DBMS, but more research has 
to be done at higher levels: query language, query compilation 
and execution. 
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