

B-tree Index Structures for Multimedia Data
Vladimir T. Dimitrov1

Abstract – There are specific requirements to Data Base
Management Systems (DBMS) for multimedia data support.
Conventional index structures are designed for storage and
retrieval of conventional data. They have demonstrated some
limitations in the case of multimedia data. B-tree index
structures are more appropriate for storage and retrieval of
multidimensional data.

Keywords – Database Systems, Multimedia Data, Tree-Like
Index, Multidimensional Data.

I. INTRODUCTION

Conventional index structures are one dimensional, in sense
that they assume a single search key, and they retrieve records
that match a given search key value. There are applications
that view data as existing in a 2-dimensional space, or even in
higher dimensions. This kind of applications are hardly
supported by conventional DBMS, instead specialized
systems are designed for multidimensional applications. One
important way in which these specialized systems distinguish
themselves is by using data structures that support certain kind
of queries that are not common in SQL applications.

Geographic Information Systems (GIS) are typical example
of multidimensional applications. They store its objects
(points or shapes) in two-dimensional space. These databases
are maps, where the stored objects represents houses, roads,
bridges, pipelines, and other physical objects.

The queries used in GIS are not typical of SQL queries,
although many of them can be expressed in SQL. These
queries can be classified as follow:
• Partial match queries. Values are specified for one or

more dimensions and DBMS has to search for all
points matching those values in those dimensions.

• Range queries. Ranges are given for one or more of
the directions, and DBMS search for the set of points
within those ranges. Shapes can be searched partially
or wholly within the range.

• Nearest-neighbor queries. DBMS search for the
closest point to a given point.

• Where am I queries? DBMS search for shapes in
which a given point is located.

There are four tree-like structures useful for range queries
or nearest neighbor queries on multidimensional data:

1. Multi-key indexes.

2. kd-trees.
3. Quad trees.
4. R-trees.
1-3 are intended for sets of points. The last one is

commonly used to represent sets of regions, but is also useful
for points.

II. MULTIPLE-KEY INDEXES

In this case, several attributes are representing the data
points. A simple tree-like scheme for accessing these points is
an index of indexes, or more generally a tree in which the
nodes at each level are indexes for one attribute.

In Fig. 1 the idea is illustrated for the case of two attributes.
The “root of the tree” is an index for the first of the two
attributes. This index could be any type of conventional index,
such as a B-tree or a hash table. The index associates with
each of its search-key values a pointer to another index. If V is
a value of the first attribute, then the index which is returned
by following key V and its pointer is an index into the set of
points that have V for their value in the first attribute and any
value for the second attribute.

Fig. 1. Nested indexes on different keys

In a multiple-key index, some of the second or higher rank

indexes may be very small. Thus, it may be appropriate to
implement these indexes as simple tables that are packed
several to a block.

Partial-match queries. If the first attribute is specified,
then the access is quite efficient, all what have to be done is to
find the one subindex that leads to the desired points. If the
root is a B-tree index, then two or three disk I/O’s have to be
done to get the proper subindex and then to use whatever
I/O’s are needed to access all of that index and the points of

1Vladimir T. Dimitrov is associate professor at the Faculty of
Technical Sciences, University of Sofia, POB 1829, 1000 Sofia,
Bulgaria, e-mail: cht@fmi.uni-sofia.bg

Indexes on
first attribute

.

.

.
Indexes on
second attribute

411

B-tree Index Structures for Multimedia Data

the data file itself. If the first attribute does not have a
specified value, then every subindex have to be searched, a
potentially time-consuming process.

Range queries. The multiple-key index works quite well
for a range query provided the individual indexes themselves
support range queries on their attribute. To answer a range
query, root index has to be used and the range of the first
attribute to find all of the subindexes that might contain
answer points. Then each of these subindexes has to be
searched using the range specified for the second attribute.

Nearest-neighbor queries. To find the nearest neighbor of
point (x0, y0), a distance d has to be find first, such that several
points are expected to be within distance d of point (x0, y0).
After that the range query can be applied: x0 – d ≤ x ≤ x0 + d
and y0 – d ≤ y ≤ y0 + d. If there are no points in this range, or
if there is a point, but distance from (x0, y0) of the closest
point is greater than d, then the range has to be increased and
search repeated. Search can be ordered so that the closest
places are searched first.

III. KD-TREES

kd-tree is generalization of the binary search tree to
multidimensional data. It is a main-memory data structure. A
kd-tree is a binary tree in which interior nodes have an
associated attribute a and a value V that splits that data points
into two parts: those with a-value less than V and those with
a-value equal or greater than V. The attributes at different
levels of the tree are different, with levels rotating among the
attributes of all dimensions. In the classical kd-tree, the data
points are placed at the nodes, but for the sake of block model
of storage two modifications are done:

1. Interior nodes have only an attribute, a dividing
value for that attribute, and pointers to left and
right children.

2. Leaves are blocks, with space for as many records
as a block can hold.

An example of kd-tree is presented in Fig. 2. There are two
dimensions (Speed and Age), which are alternatively splitting
data points at each level. Leaves contain data points and they
can be placed at each level of the kd-tree.

For the lookup values for all dimensions could be given. A
lookup of a tuple is performed as in a binary search tree. At
every interior node the search is redirected to a subtree which
is possible to contain a leaf with the tuple.

Insertion starts as lookup to find the leaf. If the block of the
leaf has enough room – the new data point is inserted. If there
is no room, the block is divided into two new blocks. Content
of the block is distributed into the new two blocks using the
attribute corresponding to the leaf level. New interior node is
created whose children are the two new blocks. In the new
interior node the splitting value is put.

Partial-match queries. If values are given for some of the
attributes, then at every level belonging to attribute whose
value is known search direction is clear. If there is no value
for the attribute at a node, then both its children have to be
explored.

Range queries. Sometimes, a range will allow search
direction to be directed only to one child of a node, but if the

range straddles the splitting value at the node, then both
children have to be explored.

Nearest-neighbor queries. They are executed in the same
way as in the case of multiple-key indexes.

Fig. 2. A kd-tree with two dimensions

Adapting kd-trees to secondary storage. Let kd-tree with

n leaves is stored in a file. Then the average length of a path
from the root to a leaf will be about log2 n, as for any binary
tree. If each node is stored in a block, then to traverse a path
one disk I/O per node must be done, which in summary is
more than for the typical B-tree. In addition, since interior
nodes of kd-tree have relatively little information, most of the
block would be wasted space. The twin problems of long
paths and unused space cannot be solved completely, but there
are two approaches that will make some improvements in
performance:

• Multiway branches at interior nodes. Interior
nodes of a kd-tree could look more like B-tree
nodes with many key-pointers pairs. If a node
contains n keys, then values of an attribute could
be split into n + 1 ranges. If there are n + 1
pointers, then could be followed appropriate one to
a subtree that contain only points with attribute in
that range. Problems are when reorganization of
the nodes has to be done, in order to keep
distribution and balance.

• Group interior nodes into blocks. In this
approach the tree nodes have only two children,
but many interior nodes are packed into single
block. In order to minimize the number of block
that have to be read from disk while traveling
down one path, the best is to include in one block
a node and all its descendants for some number of
levels. That way, once the block with this node is
retrieved, it is possible to use some additional
nodes on the same block, saving disk I/O’s.

IV. QUAD TREES

In quad tree, each interior node corresponds to a square
region in two dimensions, or to a k-dimensional cube in k
dimensions. If the number of points is no larger than what will
fit in a block, then this square is a leaf of the tree, and it is
represented by the block that hold its points. If there are too
many points to fit in one block, then the square is an interior

Speed 150

Age 60
Age 47

Speed 80 Speed 300

Age 38

70, 110
85, 140

50, 275
60, 260

50, 100
50, 120

25, 60 45, 60
50, 75

30, 260 25, 400
45, 350

412

Vladimir T. Dimitrov

node, with children corresponding to its four quadrants. See
Fig. 3 for an example of quad tree.

Fig.3. A quad tree

Since interior nodes of a quad tree in k dimensions have 2k

children, there is a range of k where nodes fit conveniently
into blocks. However, for the 2-dimensional case, the situation
is not much better than for the kd-tree; an interior node has
four children. In quad tree splitting point for a node has to be
the centre of a quad-tree region, which may or may not divide
the point in that region evenly. When the number of
dimensions is large many null pointers in the interior node
could be found. In this case, only non-null pointers can be
represented.

Standard operations on quad tree resemble those for kd-
tree.

V. R-TREES

An R-tree (region tree) is a data structure that captures
some of the spirit of a B-tree for multidimensional data. B-tree
node has a set of keys that divide a line into segments. Points
along that line belong to only one segment and it is easy to
determine a unique child of that node where the point could be
found.

An R-tree represents data that consists of 2-dimensional or
higher-dimensional regions, which are called data regions. An
interior node of an R-tree corresponds to some interior
region, which not normally a data region. The region can be of
any shape, but in practice it is usually rectangle or other
simple shape. The R-tree node has, in place of keys,
subregions that represent the contents of its children. The
subregions are not needed to cover entire region, which
satisfactory as long as all the data regions that lie within the
region are wholly contained within one of the subregions. The
subregions are allowed to overlap, although it is desirable to
keep the overlap small. An R-tree for a map is presented in
Fig. 4.

R-tree is useful for “where-am-I” queries, which specify a
point P and asks for the data regions in which the point lies.
Search starts from the root, with which the entire region is
associated. The subregions at the root are examined to
determine which children of the root correspond to interior
regions that contain point P.

If there are zero regions, then P is not any data region. If
there is at least one interior region that contains P, then P must
be recursively searched at the child corresponding to each
such region. When one or more leaves are reached, then actual
data regions should be found or a pointer to that record.

Fig. 4. An R-tree for a map

When new region R into R-tree should be inserted,

procedure starts from the root and looks subregion into which
R fits. If there is more than one such region, then one of them
is picked and process is repeated there. If there is no
subregion that contains R, then one of the subregions has to be
expanded. Which one to pick may be difficult decision. Idea is
to expand regions as little as possible, children’s subregions
have to be asked to increase their area as little as possible,
change the boundary of that region to include R, and
recursively insert R at the corresponding child.

Eventually, a leaf is reached where region R is inserted. If
there is no room for R at that leaf, then the leaf must be
divided. The new two subregions have to be as small as
possible, but they have to cover all the data regions of the
original leaf. Having split the leaf, the region is replaced and
pointer for the original leaf at the node above is replaced too
by a pair of regions and pointers corresponding to the two new
leaves. If there is a room in the parent, process is finished.
Otherwise, recursively nodes are divided going up the tree.

VI. BITMAP INDEXES

In this index structure file records have permanent numbers
and there is some data structure that is used easy to find
record by their numbers. Such a structure can be a
conventional index on the data file, but in the data file there is
no need to support key field (the record number).

A bitmap index for a field F is a collection of bit-vectors
of length n, one for each possible value that may appear in the
field F. The vector for value v has 1 in position i if the record
with that number has v in field F, and has 0 there if not.

Bitmap indexes require too much space, when there are
many different values for a field, since the total number of bits
is the product of the number of records and the number of
values. That is why, compression has to be used.

Bitmap indexes have management problems, but they
answer partial-match queries very efficiently in many
situations. They can also help answer range queries. These
kind of queries are supported by using AND/OR operations
with bitmap-vectors.

Let bitmap index on field F of a file has n records, and there
are m different values for field F that appear in the file. Then
the number of bits in all the bit-vectors for this index is mn.
This number can be small compared to the size of the file
itself, but the larger m is, the more space the bitmap index
takes.

But if m is large, then 1’s in a bit-vector will be rare - the
probability that any bit is one is 1/m. If 1’s are rare, then bit-

((0,0),(60,50)) ((20,20),(100,80))

road1 road2 house1 school house2 pipeline pop

50, 200

25, 60
45, 60

75, 100 50, 275
60, 260

25, 300

SW

SE
NE

NW

50, 75
50, 100

85, 140

50, 120
70, 110

30, 260 25, 400
45, 350

413

B-tree Index Structures for Multimedia Data

vectors can be encoded to take much fewer than n bits on the
average. Run-length encoding approach is encoding
sequence of i 0’s followed by a 1 (a run), by some suitable
encoding of the integer i. The codes for each run are
concatenated together, and that sequence of bits is the
encoding of the entire bit-vector.

Representing the integer i as a binary number do not work,
because there is no way to divide the concatenated encoded
bit-vector on runs. So, the encoding of run length must be
more complex. There are many encoding schemas, but they
work well only when typical runs are very long. Such a
schema uses the number of bits j needed to represent in binary
the number i. This number j is approximately log2i, and is
represented by j - 1 1’s and a single 0.

Concatenated sequence of above mentioned codes easy can
be divided into j codes and then original vector can be
recovered. For that purpose are used 0’s as separators – every
j-code is a sequence of 1’s ending with 0.

Every bit-vector so decoded will end in 1, and any trailing
0’s will not be recovered, but the number of records in the file
is known, so additional 0’s can be added. Since 0 in a bit-
vector indicates the corresponding record is not in the
described set, then trailing 0’s can be ignored.

Let m = n, i.e., each value for the filed on which bitmap
index is constructed, has a unique value. The code for a run of
a length i have about 2log2i bits. If each bit-vector has a single
1, then it has a single run, and the length of that run cannot be
longer than n. Thus, 2log2n bits are an upper bound on the
length of a bit-vector’s code in this case. Since there are n bit-
vectors in the index (m = n), the total number of bits to
represent the index is at most 2log2n. Without the encoding n2
bits would be required.

Because only one run can be decoded at a time, operations
(AND/OR) on bitmap-vectors can be interleaved with
decoding at runtime.

Bit-vectors can be indexed with secondary indexes on
values of the vector field, but instead value – a pointer to the
bit-vector can be used. Bit-vectors can be packed in blocks of
index data file, but if they are very long they can cross block
boundaries in a chain of blocks.

There are two aspects to the problem reflecting data-file
modifications in a bitmap index:

1. Record numbers must remain fixed once
assigned.

2. Changes to the data file require the bit map
index to change as well.

When a record is deleted its number is not used again and
in the data file a “tombstone” is put. This is a consequence of
point 1. The bitmap index must also be changed – for record
position in all bit-vectors 0 has to be put.

When a new record is inserted, the next number is assigned
to it. This means that next available number has to be
supported persistently. In all bit-vectors at the end 1 has to be
added where this is appropriate. Technically, 0 must be added
too, but this operation can be postponed till next insertion of
new record with a value in the corresponding field.

Modification a record will influence bit-vectors – value of 1
has to be changed to 0 and vice versa where is appropriate.

Bit-vectors for new values have to be created, as in the case of
insertion of new records.

VII. CONCLUSION

Above presented data structure are goods tools for effective
storage and retrieve of persistent multimedia data. Some of
them are used in currently available DBMS, but others are
used only in specialized systems. Our intension is to extent an
open source DBMS like MySQL with some of these indexed
data structure for the support effectively and efficiently search
and retrieval of multimedia data.

These data structures are at the physical level of an
implementation of multimedia DBMS, but more research has
to be done at higher levels: query language, query compilation
and execution.

ACKNOWLEDGEMENT

Presented overview is funded under contract VU-N-
202/2006 “Multimodal biometric analyses: Methods and
algorithms” with Bulgarian National Fund for Scientific
Research.

REFERENCES

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-
tree: an efficient and robust access method for points and
rectangles. Proc. ACM SIGMOD Intl. Conf. on Management of
Data, 1990.

[2] J. L. Bentley, Multidimensional binary search trees used for
associative searching, Comm. ACM 18:9, 1975.

[3] J. L. Bentley., Multidimensional binary search trees in database
applications, IEEE Trans. On Software Engineering SE-5:4,
1979.

[4] J. L. Bentley, J. H. Friedman, Data structures for range
searching, Computing Surveys 13:3, 1979.

[5] W. A. Burkhard, Hashing and tree algorithms for partial match
retrieval, ACM Trans. on Database Systems 1:2, 1976.

[6] R.A. Finkel, J. L. Bentley, Quad trees, a data structure for
retrieval on composite keys, Acta Informatica 4:1, 1974.

[7] A. Guttman, R-trees: a dynamic index structure for special
searching, Proc. ACM SIGMOD Intl. Conf. on Management of
Data, 1974.

[8] J. T. Robinson, The K-D-B-tree: a search structure for large
multidimensional dynamic indexes, Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, 1981.

[9] T. K. Sellis, N. Roussopoulos, C. Faloutsos, The R+-tree: a
dynamic index for multidimensional objects, Proc. Intl. Conf on
Very Large Databases, 1987.

[10] J. B. Rothnie Jr., T. Lozano, Attribute based file organization in
a paged memory environment, Comm. ACM 17:2, 1974.

414

