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Abstract – In this paper the relations between the allpass 
transfer function poles placement and the fractional delay para-
meter values are analysed and new closed form expressions are 
derived. It is shown that the poles are taking very unusual 
positions compared to other filter realizations. Then, the sensi-
tivities of the most popular allpass sections are investigated and 
the most appropriate structures for different delay-time values 
are identified. Using these results it is possible to design high 
accuracy fractional delay structures over different frequency 
ranges and in a limited wordlength environment. 
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I. INTRODUCTION 

Recently, there is a growing interest in developing 
fractional delay digital filters, which appeared to be very 
useful in numerous fields of digital signal processing and 
digital communications (timing adjustment, jitter elimination, 
digital modems, and speech synthesis) [1].  

The theory and the design methods of FIR fractional delay 
filters are quite well developed [1][2][3] and mature enough to 
have convenient structures to implement them. There are, 
however, very few publications about IIR fractional delay 
filters, probably because of the problems connected to the IIR 
realizations like possible instabilities, higher level of the 
round-off noises and worst behavior in a limited wordlength 
environment due to their higher sensitivities. In general the 
obtained solution has to be checked so that all poles of the 
filter remain within the unit cycle in the z-domain. The design 
of IIR fractional delay is by far more complicated than that of 
corresponding FIR filters. In this work we choose to 
investigate allpass based fractional delay IIR filters because 
they have the best magnitude properties, permitting us to 
concentrate on the phase response characteristics. We use the 
approximation procedures proposed by Thiran [4], which 
appear to be the most appropriate for the design of fractional 
delay digital structures with a maximally flat group delay. 

When designing recursive digital filters in limited 
wordlength environment, it is very important to develop or 
choose allpass sections with minimized sensitivities for every 
given transfer function poles position. But the pole-positions 

are varying considerably for different values of the realized 
fractional delay, so a thorough analysis of the connections 
between the poles placement and the fractional delay 
parameter values has been made in this paper. Additionally, 
we investigate the range of fractional delay parameter values 
for which the allpass sections are remaining stable as well as 
the range of values for which the allpass sections have only 
real poles. We derive analytical relations between the 
fractional delay parameter values and the poles for second, 
third and fourth order allpass sections.  

The results so obtained are presented analytically and 
graphically. These results generalize the behavior of the 
fractional delay allpass sections so they can be used to design 
high accuracy fractional delay structures in a different 
frequency range and in a limited wordlength environment. 

II. ANALYSES OF ALLPASS BASED FRACTIONAL 
DELAY FILTERS OF DIFFERENT ORDER 

There are several approaches to approximate given phase, 
group delay, or phase delay response specifications [1][2][3]. 
To obtain maximally flat group delay responses, we select the 
method proposed by Thiran because it provides a closed form 
solution for allpass transfer function coefficients. The 
coefficients of an allpass filter with a maximally flat group 
delay response at the zero frequency can be expressed as [4]: 
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This allpass filter is stable when ND >  and when 
NDN <<−1  as it was observed in [2]. We have shown in 

[7] that the transfer function pole placements are closely 
related to the fractional delay parameter values. The fractional 
delay parameter values must be very carefully selected to keep 
the transfer function poles position inside of the unit circle.  

A. Investigation of a second order transfer function 

It is easy to obtain the two real poles of the second order 
fractional delay allpass transfer function when fractional delay 
parameter value is 21 << D  and the pair of complex-
conjugate decision when 2>D . The complex-conjugate poles 
pair can be expressed as a function of the fractional delay 
parameter value as follows  
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The possible poles positions as a function of increasing 
fractional delay parameter values from two to infinity are 
shown in Fig. 1. One could notice that transfer function poles 
occupy fixed position on the root loci.  

The most common requirement for real applications is time 
delay with small fractional delay parameter values 
( 5.05.0 +<<− NDN , where N is the transfer function 
order) which means that poles should be positioned near 

0=z  (more specifically in the range between 0 and 0.2 on 
both real and imaginary axes in the z plane). 

  
Fig. 1. Possible pole positions of second order  

allpass transfer function 

B. Investigation of a third order transfer function 

Similar investigation can be made for third order allpass 
transfer function. Third order fractional delay allpass filter is 
stable for fractional delay parameter values 2>D . In most of 
the cases there are one real and a pair of complex-conjugated 
poles. We identify two distinct situations. In the first one, for 

32 << D , the real pole is negative and the complex-
conjugated poles are with positive real parts on the lower root 
loci. This placement is specific for NDN <<− 5.0  
fractional delay parameter values. In the second case, for 

3>D , the real pole and the real part of the complex-
conjugated pair are positive. The complex-conjugated poles 
take values on the upper root loci (Fig. 2). Here one could 
conclude that poles placement for small fractional delay 
parameter values are concentrated in the vicinity of 0=z .  
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Fig. 2. Possible pole positions of third order  

allpass transfer function 

C. Investigation of a fourth order transfer function 

Investigation of fourth order transfer functions leads to si-
milar conclusions, as shown in Fig. 3. One specific distinction 
of this function is that the upper loci have negative real part 
for small variation of fractional delay parameter values D.  

 
Fig. 3. Possible pole positions of fourth order  

allpass transfer function 

At this point it is easy to make a generalized conclusion for 
the behavior of N-th order allpass structures: they are stable 
for 1−> ND , given that for ND =  there exist N solutions in 

0=z . There are always real poles for the range of values 
NDN <<−1 , and at least one of them is always negative. 

There are always pairs of complex-conjugated poles for the 
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case of ND > , and increasing of N leads a shift for the bigger 
part of the loci toward the left half of the z-plane. 

III. SECOND ORDER FRACTIONAL DELAY 
ALLPASS SECTIONS 

It is clear from the previous section that the transfer 
function poles of the allpass circuits with fractional delay are 
laying in the vicinity of z=0 and thus we need realizations 
with higher pole-density in this region in order to ensure high 
fractional delay time accuracy. Our extensive search has 
shown that no such realizations are existing. The most 
promising candidate is the one based on the famous coupled 
form having equal pole-density inside the unit circle. 
Unfortunately, we could not synthesize an allpass section with 
uniform pole-distribution and because of that we have to 
investigate and compare the other known allpass sections in 
order to identify these with lower sensitivity for each pole-
positions. 

We have shown in [7] that for small values of fractional 
delay parameter 5.05.0 +<<− NDN , the phase delay 
response remains constant over wider range of frequencies 
and this range is narrowing when increases. In fact 
realizations with larger D (i.e. transfer function poles near 

1=z ) can be used for implementation of fractional delay 
filters for very special applications.  

When we want to achieve larger non-integer time delay, it 
is recommendable to use a cascade with the necessary integer 
number of delay elements and one second order fractional 
delay allpass structure. This will ensure the largest possible 
frequency range over which the group delay response will stay 
flat.  

The transfer function of the most popular allpass sections 
are as follows [5]:  
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After representing the coefficients of these sections with the 
coefficients of the Thiran approximation (1), we get the 
results shown in Table 1-4. With these formulae it is possible 
to design and realize the corresponding allpass sections for 
any given delay parameter D. 

TABLE  I 
MH2A AND MH2B FRACTIONAL DELAY FILTER COEFFICIENTS 
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TABLE  II 
KW2A AND KW2B FRACTIONAL DELAY FILTER COEFFICIENTS 

KW2A KW2B 
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TABLE  III 
AL AND GM2 FRACTIONAL DELAY FILTER COEFFICIENTS  

AL GM2 
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TABLE  IV 
ST2A AND ST2B FRACTIONAL DELAY FILTER COEFFICIENTS 

ST2A ST2B 

a b 1c  2c  
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IV. SENSITIVITY INVESTIGATIONS 

Next we investigate the phase response sensitivities of the 
fractional delay allpass sections so obtained for two delay 
parameter D values using the package PANDA [6]. The worst 
case sensitivities (with transfer function coefficients given in 
the tables) are shown in Fig. 4 – Fig. 11. Thus it appeared that 
the Mitra and Hirano (MH2A and MH2B), Gray-Markel 
(GM2) and Ansari-Liu (AL) structures are the most 
appropriate for small delay parameter values since they have 
the lowest phase response sensitivity. For poles near 1=z  
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the low sensitivities sections ST2A and ST2B are behaving 
much better than all other known sections.  

 
 Fig. 4. Worst case sensitivity  Fig. 5. Worst case sensitivity 
 of MH2A  of MH2B 

 
 Fig. 6. Worst case sensitivity  Fig. 7. Worst case sensitivity 
 of KW2A  of KW2B 

 
 Fig. 8. Worst case sensitivity  Fig. 9. Worst case sensitivity 
 of AL  of GM2 

 
 Fig. 10. Worst case sensitivity  Fig. 11. Worst case sensitivity 
 of ST2A  of ST2B 

V. CONCLUSIONS 

In this paper we have investigated the behavior of the frac-
tional delay allpass filters with maximally flat group delay 
response. It was found that transfer function poles of these 
filters are situated quite differently compared to the ones of 
the known allpass sections. It was shown that the sections sen-
sitivities depend strongly on the value of the fractional delay 
parameter D and the most suitable sections for some typical 
pole-locations have been pointed out. Similar sensitivity ana-
lysis for other pole-locations (different values of D) should be 
conducted and the most proper allpass sections should be se-
lected or synthesized in order to ensure an accurate realization 
of the fractional delay in a limited wordlength environment.  
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