

Applying Tabu - Search Heuristic for Software Clustering
Problem

Violeta T. Bozhikova1 and Mariana Ts. Stoeva2

Abstract – In the paper we present a Tabu-search software
clustering algorithm. Unlike many other software clustering
techniques, discussed in the literature, our approach evaluates
the quality of a graph partition that represents a software
clustering solution, considers the importance (weight) of cluster’s
components and satisfies a specific restrictive condition. We
discuss the Tabu-Search features of our clustering algorithm.
Next we present the full application of our algorithm over an
open source object-oriented Java program. Finally we try to
evaluate objectively our results, comparing them to those,
produced by the algorithm of Spiros Xanthos [1].

Keywords – software reengineering, software-clustering
algorithms, software representation.

I. INTRODUCTION

The software reengineering literature shows [1, 4-9] that the
problem of clustering software structure is NP hard, so a hope
for finding a general solution to this problem software is
unlikely. Software clustering is used for decomposing the
structure of software systems into cluster (subsystems), while
satisfying a number of problem-specific constraints.
Subsystems provide developers with structural information
about the systems: their components, their interfaces, and their
interconnections. Subsystems facilitate program
understanding during the software maintenance by treating
sets of source code resources as software abstractions.
Software clustering is a very important approach when trying
to decompose large and complex legacy systems into small
parts in order to repair or to improve their structures. It is used
also as a way to transfer software to new software or hardware
platform.

A lot of heuristic approaches [1, 4-9] have been developed
in order to effectively resolve this problem. In the paper we
discuss our Tabu-Search algorithm that is an attempt to
navigate through the search space of all possible graph
partitions more effectively. Unlike many other software
clustering techniques, our approach evaluates the quality of a
graph partition that represents the software structure,
considers the importance (weight) of cluster’s components
and satisfies a specific restrictive condition. Our clustering
algorithm creates clusters by heuristically minimizing the
value of a goal function, than maximizing the quality the

solution.
In the paper we present and discuss the application of our

algorithm over an open source object-oriented Java program.
We compare our clustering results to those, produced with the
Spectral-Graph Partitioning algorithm, developed by Spiros
Xanthos [1].

II. TABU-SEARCH TECHNIQUE

Tabu-Search is used for solving optimization problems.
This is a heuristic procedure which tries to avoid falling into
local optima by creating a special list of forbidden moves,
called “tabu” list [3]. The work by Glover and Laguna 1997,
gives a comprehensive description of the Tabu-Search
technique [2].

In general, the criteria for classifying aspiring and
forbidden moves are specific to the application. For example a
move may be regarded as “tabu” simply because it was recent.
Move may be also “tabu” is it could lead to a solution that is
already been considered or has been repeated many times
before [4]. On occasions, if we conceder a “tabu” move might
lead to the best solution, that move might be allowed. Tabu-
Search starts usually at a possible random point. The search
space, or neighborhood, comprises a set of moves that lead to
another solution when applied to the current one.

The general Tabu-Search algorithm can be summarized [4]
as following:

1. Generate an initial random partition rc
2. Loop
• Define the neighborhood set of the current solution;
• Identify the Tabu set (define a forbidden move);
• Define an aspiring move;
• Choose the best Move (Find the best neighbor r)

if r is found then rc = r
End Loop
(Exit when goal is satisfied or the stopping condition is
reached)
3. rc is the sub-optimal solution

III. OUR TABU-SEARCH APPROACH

Let describe how the key ingredients of the Tabu-search
technique are realized in our algorithm:
• Define the initial solution;

It is important to have an easy and quick way of generating
an initial solution. To get the best solution in a Tabu-Search
implementation we simply use as initial solution the initial

1Violeta T. Bojikova is with the Department of Computer Science
Varna Technical University, Bulgaria, E-mail:
vbojikova2000@yahoo.com

2Mariana Ts. Stoeva is with the Department of Computer Science
Varna Technical University, Bulgaria, E-mail:
mariana stoeva@abv.bg

861

Applying Tabu - Search Heuristic for Software Clustering Problem

solution of our early created and experimentally evaluated
heuristic clustering algorithms [8,9].
• Define a forbidden move.

For us, any solution which has been already selected is put
into a “tabu” list so that it becomes ‘taboo’ (forbidden). This
minimizes the chance of cycling in the same solution, and
therefore creates more chances of improvement by moving
into un-explored areas of the search space.

The space of all possible solutions is searched in a sequence
of moves from one possible solution to the best available
alternative taking in consideration the forbidden solutions
saved in the “tabu” list.
• Define the neighborhood set of the current solution;

We define a partition r to be a neighbor of a partition rc if
the two partitions have at least one different element. Three
types of operations are applied consecutively in order to find
the best neighbor of a current partition (that minimize the goal
function, satisfying a specific restrictive condition W0). The
result of the first operation is: merger of 2 clusters. The
second operation is move. There are two types of moves: node
move and block move. The third operation is swap of two
nodes.

• Define an aspiring move;

The next move is best neighboring solution which is not in
“tabu” list.

The goal of our software clustering process is to
automatically partition the components of a system into
clusters (subsystems) so that the resultant organization
concurrently minimizes inter-connectivity (i.e., connections
between the components of two distinct clusters) while
maximizing intra-connectivity (i.e., connections between the
components of the same cluster). We accomplish this task by
treating clustering as an optimization problem where our goal
is to minimize the goal function k (2) based on the relation
between the inter-connectivity and intra-connectivity.

 The six steps of our Tabu-Search algorithm are described
bellow. We have to underline that we have developed this
algorithm in order to improve the effectiveness (decreasing
the number of the iterations in the iterative part) of our early
developed clustering algorithm [8], than decreasing it’s its
computational complexity.

So, the general steps of our Tabu-Search clustering
algorithm are:
1. Graph Structure Entry: G = (X, U)
2. Graph Structure Verification
3. Execute a sequential graph partition algorithm that

creates the initial graph partition (Initial Solution - rapr.).
Push rapr. into Tabu list. kapr is the goal function of the
graph partition rapr.

4. Let rc =rapr, kc=kapr.
5. Get a set of solutions in neighborhood of rapr executing a

Tabu-search algorithm:
 Repeat
 Change=false;
Find the best neighboring partition r of a current partition rc:

° Execute Operation “Merge” (for clusters);
° Execute Operation “Move” (for nodes, for
clusters);

° Execute Operation “Swap” (for nodes).
 If r is found {if ∃r, kr<kc} and r is not into Tabu list then
 rc =r;
 Push rc into Tabu list.

Change=True;
 End if
 Until not (Change);
6. Find rc - the sub-optimal solution (kc is value of the goal

function).

Example
We have used for our experiments the graph representation

of an open-source object oriented Java program. This graph
representation is presented in [1]. We have used our described
above clustering algorithm to partition the produced by
Xanthos weighed graph that models just commented object
oriented Java program.

In the paper we show the results of clustering this weighed
graph using our Tabu-Search algorithm and compare our
solution (figure 2) with the solution (figure 3) created with the
spectral clustering algorithm of Xanthos [1].

Figure 1 show how the Java program is presented as a
directed weighed graph G = (X,U) by our clustering tool. The
source code components (classes) of the Java program are
modeled as set of N nodes X, and the source code
dependencies (inherit, call, instantiated) are modeled as the set
of graph’s edges U.

In figure 2 is presented the sub-optimal clustering solution
produced by applying our Tabu-Search algorithm.

Figure 3 shows the solution produced by the spectral
clustering algorithm of Xanthos [1].

A goal function k (2) is used to evaluate the quality of each
partition. “k” increases as the inter-edges (i.e., external edges
that cross cluster boundaries) increase. In the case, “k” is
designed so that a solution with a lower objective function
value has a high quality and represents a better solution to the
problem. Let xi denote the node with index i and weight of wi.
Let M is the number of clusters in the current partition of G. A
partition is clustering solution. It is a decomposition of the set
of elements (i.e., all the nodes of the graph) into mutually
disjoint clusters. The weight Wi (1) of each cluster “i” is the
sum of the weights of all it’s nodes. Wi must be less then W0,
where W0 is a user defined restrictive condition.

 0WWi ≤ (1)

The value of the objective function “k”, where kij is the
number of inter-edges (i.e., external edges that cross cluster
boundaries) between cluster “i” and cluster “j” is calculated as
following (2) and must be minimal:

 jikk
M

i

M

j
ij ≠∀= ∑∑

= =1 1
,

2
1

 (2)

We can see and compare the results (figure 2) of the
execution of our algorithm with this (figure 3) produced by
the spectral clustering algorithm of Xanthos [1]. We realize

862

Violeta T. Bozhikova and Mariana Ts. Stoeva

that our algorithm shows the same result (in quality of the
decomposition solution – “k”).

Now that a lot of software clustering approaches exists, the
validation of clustering results interests the Reverse
Engineering research community. Similarity measurements
enable the results of clustering algorithms to be compared to
each other, and preferably to be compared to an agreed upon
“benchmark” standard. We have to underline that the
“benchmark” standard needn’t be the optimal solution in a
theoretical sense. Rather, it is a solution that is perceived as
being “good enough”. Using Precision/Recall similarity
technique we have considered that the similarity between our
solution (fig. 4) and the solution of Xanthos (fig. 3) is very
good (>70%).

Fig. 1. The object oriented Java program, modeled as a graph

G=(X,U)

Fig. 2. The sub-optimal clustering solution produced by applying

our Tabu-Search algorithm

Fig. 3: The solution created by the spectral clustering algorithm of

Spiros Xanthos [1].

Fig. 4: Our sub-optimal clustering solution presented, using the

presentation style of [1]

IV. CONCLUSION

Decomposing source code components and relations into
subsystem clusters is an active area of research. Clustering
methods and tools help software engineers understand and
effectively maintain large and complex software systems is an
active research area. Numerous clustering approaches have
been proposed in the reverse engineering literature, each one
using a different algorithm to identify subsystems than
producing an architectural view [1,4-9].

The innovation of this paper is the use of Tabu Graph
Partitioning Technique in the object oriented domain and the
application of this technique for decomposing an object
oriented system into smaller module, some of which might be
used as reusable components.

The presented approach can be seen as a further
improvement of our early developed heuristic software
clustering algorithms [8,9]. Improving software clustering
algorithms is one of the most important topics in the software
clustering area. Our paper is about improving existing
software clustering algorithms by applying new heuristics (in
the case Tabu-Search) that take into consideration a restrictive
condition and the weigh of nodes. We have observed that the
most clustering tools don’t take into consideration some
restrictive conditions. We find also that the existing clustering
tools are not able to process graphs with weighted arcs or
nodes because of the computational complexity of the
clustering problem.

Our observation is that there is not enough experience in
the field of clustering object-oriented software. That is
because the existing clustering tools are not able to process
large graphs. The problem is that even medium object-
oriented programs produce such graphs because of
polymorphism. In the paper we discuss the application of our
Tabu-Search algorithm for clustering a small open source
object oriented program. We have considered that the
presented algorithm shows good results (in quality of the
solution “k” and similarity between the produced partitions)
for clustering this program. At the same time we must
underline that extended research that confirms the correctness
of this method for clustering object oriented software is
needed. The problem is the lack of standard set of object-

863

Applying Tabu - Search Heuristic for Software Clustering Problem

oriented programs that can be used by the researchers in this
field, to test and compare their algorithms. Our hope is to
continue working in this field.

The results produced by the algorithm can have multiple
uses:
• The modules that are found can be used as the starting

point for the reverse engineering process of a software
system.

• Each cluster can be viewed as a reusable component.
• The solution produced by our tool is in this case highly

cohesive. Our algorithm minimizes the communication
between the modules of the system, satisfying a
restrictive condition (1) that guaranties the mutual
equality of the weight of the clusters. Therefore, it can
also be used to identify the modules that should be
assigned in different machines, in a distributed
environment.

REFERENCES

[1] Spiros Xanthos “Clustering Object-Oriented Software Systems
using Spectral Graph Partitioning”

[2] Glover, F. (1990), Tabu-Search: A tutorial, Interfaces 20 (4), pp
74-94.

[3] Reeves C. (1993), Modern Heuristic Techniques for
Combinatorial Problems, Blackwell Scientific Publications,
Oxford

[4] Reformulating Software Engineering as a Search Problem, J.
Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M.
Lumkin, B. S. Mitchell, S. Mancoridis, K. Rees, M. Roper, M.
Shepperd", In the Journal of IEE Proceedings - Software ,
150(3): 161-175, 2003

[5] Mitchell, Mancoridis, Traverso, “ Search Based Reverse
Engineering”, In the ACM Proceedings of the 2002
International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), Ischia, Italy, July, 2002.
pp. 431-438

[6] Spiros Mancoridis, Brian Mitchell, C. Rorres, Y. Chen, and E.
R. Gansner, Using Automatic Clustering to Produce High-Level
System Organizations of Source Code, IEEE Proceedings of the
1998 International Workshop on Program Understanding
(IWPC'98)

[7] Derek Rayside, Steve Reuss, Erik Hedges, and Kostas
Kontogiannis. The effect of call graph construction algorithms
for object-oriented programs on automatic clustering. In
Margaret-Anne Storey, Anneliese von Mayrhauser, and Harald
Gall, editors, IWPC’00, pages 191–200, Limerick, Ireland, June
2000.

[8] V. Bojikova, “Using decomposition to produce high-level
system organization of software source code”, ICEST’2003
Proceedings of papers, pp. 329-332, София, 15-17.10. 2003.

[9] V. Bojikova, M. Karova “Using Genetic Algorithms to Solve
Software Clustering problem”, XXXIX Int’l Scientific
Conference on Information, Communication and Energy
Systems and Technologies, Proceedings of Papers - Vol.2, 16-
19 June, 2004, Bitola, Macedonia, p. 763--765.

864

