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Abstract – Main goal of the present task is to find possibilities 
for achieving uniform rules for pattern recognition, regardless of 
significant difference in initial positions and different methods 
for achieving the end form of algorithms. We will try to present 
most used rules for decision making in aggregate of: 

• uniform procedure for estimate of state, making a 
calculation of linear or quadratic form, 

• comparing of  results with some threshold value.  
We can apply this results in KDD (data mining) software. 
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I. INTRODUCTION 

By non-concave location of features by class’s areas we 
search dividing function in full quadratic form or in a part: 
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We search one-type pattern recognition rules for: 
1. Algorithms, based on optimal statistical decision 

making theory, 
2. Algorithms, based on dispersion of probabilistic 

recognition features, 
3. Algorithms, based on minimizing of geometric mean 

recognition error. 

II. OPTIMAL STATISTICAL DECISION MAKING 

In this well known case [1], pattern recognition task is treat 
as common statistical task with predefined optimum criteria.  
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Most used criterion is a loss function )ˆ( xxI  for calculation 
of conditional mean risk, searching the best estimation [4]: 

 

 

min)]ˆ([)]/([)( ⇒== xxIMxARMAR         (4) 
 

Average risk by repeatedly recognition of М classes is: 
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Decision rule for M classes (j=1,M) is: 
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Decision rule for two classes is: 
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By normal feature dispersion on M classes: 
 

        

max

||ln)(ln||ln
2
1

2
1

)(
2
1)(__,

0

1

1
1

⇒++=

=++−−

−+−=∈

∑∑

∑∑
−

−

j
T

jj
T

jjj jj j
T

j

j
T

jj
T

ji

ayaYAY

cxP

yyygifXy

μμμ

μ

      (8) 

 

By two classes and conditions:  
 

P(x1)=P(x2), 

 (c12- c11= c21- c22),         (9a) 

Σ1=Σ2,   

 

we have linear recognition rule: 
 

     
0)()(

2
1

)(__,

2
1

121

2
1

11

<−−−

−∈

∑

∑
−

−

μμμμ

μμ

T

T
i yifXy

         (9b) 

] 

Bayesian strategies compare projection of recognized 
observation (vector) on directions eq.(10), with the mean  
values vector on the same direction: 
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III. RECOGNITION MATRICES STUDY 

By limited a priory statistic we search recognition rules, 
based on sub-areas metrics for different classes. For two 
classes we can use Fisher’s nonzero hypothesis criterion [2]:    
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where: 
SΩ2 - is dispersion estimation (by groups), 
SR

2 – is dispersion estimation (in group). 
 

As multidimensional analysis we can use Mahalanobis 
distance between groups with means μi and μj and common 
covariance matrix V:    

 
 V2=(μi -μj)T V-1(μi -μj)      (11b) 

 
An estimation of dispersion in groups for M classes is: 
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where:  
P(xk) – every class a priory  probability, 
Σк – classes covariance matrices, 
y, μk – observations and means by classes vectors.  
 

An estimation of dispersion by groups for M classes is: 
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An estimation based only on statistic: 
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We search best transformation in form [1]: 

 
Z=aTY+a0                  (15) 

like: 
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where: 

y, μk, μ0, SB, SW – are observations, means and dispersion 
matrixes in initial areas,  

and Z, μk
*, μ0

*, SB
*, SW

* - the same after linear 
transformation. 

 

By two classes and  
 

аТΣка = σк*2,    и    μk
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we have: 
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and extremum conditions can be defined: 
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where: 
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By equal covariance matrix: 
 

)(1
jka μμ −Σ= −          (22) 

In case of a linear transformation by two classes with equal 
covariance matrix, the decision is known as Fisher’s linear 
discriminant [2],[3]: 

SB. Wi = λ. Sw. Wi                  (23) 
 

If Sw is a non-degenerate matrix: 
 

SB. Wi = λ. Sw. Wi                   (24) 
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By dichotomy of two classes and SB=SB‘ 
 

W = Sw
-1.(μк -μi)                   (25) 

 

and this is same as eq.(22).  
 

In multidimensional case: 
 

   ак = SWк
-1.(μк -μ0)                 (26) 

After centering: 
    ак = SWк

-1.μк          (27) 

IV. MINIMIZING OF GEOMETRIC MEAN 
RECOGNITION ERROR 

This group of methods has goal to develop procedures for 
finding dividing functions coefficients.  
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we can have eq. (1) in form of linear dividing function [3]: 
 

g(x) = aTY                   (29) 
or:  g(x) = a’TY’ + c0                 (30) 
 

Presuming linear class divider: 
  

аT(ym-yn)=0                              (31) 
 

vector аT is normal to every vector on dividing surface.  
 

So, every pair of classes (Wi, Wj):  
 

аTym>0,  if  ym ∈ Wi 
аTym<0,  if  ym ∈ Wi         (32) 

 

After transformation:  
 

 ym = - ym ;    
∀ym∈ Wj ,   

 
decision rule become:  
 

аTym<0; ∀(ym ∈ Wi,Wj)                 (33) 
 

Having a decision area supposes non-single decision, 
therefore it can be used additional limitations, for example, 
searching minimum weight vector:  

 

аTym≥b>0; ∀(ym ∈ Wi,Wj)              (34) 
  

In this case a learning task is to find weight vector ā, 
matching the best possible equation in form: 

 
 

  Ya=b; Y[n,d]; b[n,1];  n>d                   (35) 
 

This system in common case has no exact decision, 
therefore after setting error vector: 

 

e=Ya-b                  (36) 
 

the task can be treated as classical case of minimizing of: 
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and: 
   YTYa=YTb         (39) 
 

If the matrix YTY (d.d) is non-degenerate, the vector is: 
 

   а=(YTY)-1YTb=Y#              (40) 
 

where Y# = (YTY)-1YT; [dxn] is well known in theory pseudo-
reversed matrix. 

 
In this procedure it can be problems with pseudo-reversing. 

There are different concrete schemes for applying the least 
squares method and the best is the Ho-Kashap procedure. This 
procedure moves in steps to the minimum of eq.(37), keeping 
gradient directions: 

∇aJ=2YT(Ya-b)                  (41) 
∇bJ=-2(Ya-b)                  (42) 

 

It begins with statistic, grouped in two classes as a 
generalized normalized observation matrix in form: 
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where: 
xi and xj are observations of Wi и Wj, classes, and vector- 
columns ui include ni  threshold values, equal to one. 
 

If weight and limitation vectors are: 
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and according to eq.(39): 
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After including: 
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As vector direction:  
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by every а coincide with vector direction (μi-μj): 
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whence: 
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After excluding inessential scalar coefficient nα we have 
direction that minimizes sum of squares in form:  
 

)(1
jiWSa μμ −= −         (51) 

V. CONCLUSION 

Comparison of eq. (21), (22),  (25), (26), (27) gives the 
conditions, where recognition procedures, based on optimal 
linear feature area transformation – eq.(15), and linear 
Fisher’s discriminant has got equal mathematical sense.  

In both cases we have projection of observation vector on 
direction Sw

-1.(μк -μi), and comparing the result with 
some threshold value. So, according to eq.(8), (9), (10), 

we can assert about algorithmic equality of recognition 
procedures.  

After comparison of eq.(10), (22), (26), (51) we can see 
relation between linear parametric and non-parametric,  
probabilistic and determined methods, and also equivalence 
conditions of respective recognition procedures. 

The fact, that least squares procedure and maximum 
likelihood procedure approximate by probability to the linear 
Fisher’s discriminant shows that we have reason to speak not 
about different, but asimptotic approximate procedures with 
common computing scheme. The computed value (projection) 
is compared with threshold valued, which define optimum as 
decision making in sense of minimizing of risk, maximum 
confitional or a posteriori probability (Fig. 1). 
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Fig. 1 Classes and classification methods 
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