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AAbstract  -- This paper discuses closed-loop robust identification 
using the joint input-output approach in the case of additive 
output noise with outliers. To calculate robust estimates of 
unknown parameters, the recursive robust S, H and W 
algorithms are applied here. Test investigations with simulation 
data are applied. 
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I. STATEMENT OF THE PROBLEM 

Assume that a control system to be observed is linear and 
time-invariant with one input u(k), k=1,2,… and one output 
y(k), k=1,2,… and given by the equations 
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that consist a process model ( )θ,qGO  and a noise one 
( )ϕ,qHO . 

Here θ and φ are unknown parameter vectors, q is the time-
shift operator (i.e., ( ) ( )11 −=− kukuq ), the initial signal ξ(k), 
k=1,2,…used to generate unmeasurable noise v(k), k=1,2,…is 
assumed to be statistically independent and stationary with 
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The input u(k), k=1,2,… is given by 
 ( ) ( )( )kr,u,y,kku kk 1−Ψ= , (3) 
where ( ) ( )[ ]ky,,yyk K1= , ( ) ( )[ ]111 −=− ku,,uuk K . The 
reference signal r(k), k=1,2,… is a quasi-stationary signal, 
independent of the stochastic disturbance v(k), k=1,2,…, and 
Ψ is a given deterministic function such that the closed-loop 
system from Eqs. (1) and (2) with the controller ( )α,qGR  (see 
Fig. 1), which is designed for disturbance v(k), k=1,2,… by 
minimizing a quadratic performance function 
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is exponentially stable [2], [6]. Here α is the parameter vector 
of the controller, the factor 10 ≤< ρ . 

The basis of identification is the data set 
 ( ) ( ) ( ) ( ){ }Nu,,u,Nr,,rZ N KK 11= , (5) 

when the regulator ( )α,qGR  is known, and the data set 

 ( ) ( ) ( ) ( ) ( ) ( ){ }Ny,,y,Nu,,u,Nr,,rZ N KKK 111= , (6) 
in the opposite case. The data sets consist of measured 
observations of the reference signal r(k), k=1,2,…,N, the input 
u(k), k=1,2,…,N and the noisy output y(k), k=1,2,…,N. 

The aim of the given paper is to investigate robust 
estimators based on the two-stage method, which belongs to 
the joint input-output approach, when assumption from 
Eqs. (2) is not satisfied because of occasionally appearing 
outliers in an unmeasurable noise signal v(k), k=1,2,…, acting 
on the output of the system to be identified. 

Fig. 1. A closed-loop system to be observed 

II. THE TWO-STAGE METHOD FOR THE PREDICTION 
ERROR MODEL 

The input signal u(k) and the output signal y(k), k=1,2,… of 
the closed-loop system given in Fig. 1 are determined 
according to 
 ( ) ( ) ( )[ ] ( )α,qGkykrku R−=  (7) 
and 
 ( ) ( ) ( ) ( ) ( )k,qHku,qGky OO ξϕθ += , (8) 
respectively. By combining Eqs. (7) and (8) are obtained the 
closed-loop relations 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kqH,qkrqGqG,qky OOROO ξββ Φ+Φ= , (9) 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kqHqG,qWkrqG,qWku ORORO ξββ −= , (10) 
with the output and input sensitivity functions 
 ( ) ( ) ( )[ ] 11 −+=Φ αθβ ,qG,qG,q ROO , (11) 

 ( ) ( ) ( )[ ] 11 −+= θαβ ,qG,qG,qW ORO , (12) 
correspondingly. Rewriting Eq. (10) in such a form 
 ( ) ( ) ( ) ( ) ( ) ( )[ ]k,qHkr,qG,qWku ORO ξϕαβ −= , (13) 
can get 
 ( ) ( ) ( ) ( ) ( )k,qHkuc,qCkr O ξϕ+= , (14) 
where 
 ( ) ( ) ( ) ( ) ( )θααβ ,qG,qG,qG,qWc,qC ORRO +== −−− 111 . (15) 

The system, corresponding to Eq. (14), is presented in 
Fig. 2 [6]. 

Introducing 
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Eq. (15) can be rewritten in such an extended form 
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The estimate 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Tnw Np̂,,Np̂,Np̂,Nd̂,,Nd̂,Nd̂Nĉ KK 1010= (18) 
of the vector of parameters of system with the transfer 
function C(q,c), shown in Fig. 3, could be found as follows 
 ( )cQminargĉ NcN Ω∈

= , (19) 

by minimizing the criterion 
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Fig.2 The block scheme of the system, when the regulator is known 

Here 
 ( ) ( ) ( ) ( ) ( )kup,qPkrd,qDc,k −=ε  (21) 
is a prediction error, Ω is the area of permissible parameter 
values, restricted by the stability conditions of the respective 
linear difference equation. 

Fig.3 The block scheme of the system, when the regulator is 
unknown 

Let introduce the optimal solution 
 [ ] [ ]Tnw

T
p,,p,p,d,d,dp,dc ∗∗∗∗∗∗∗∗∗ == KK 1010 , (22) 

consists of the true values of the parameters. Then 
 ( ) ( ) ( ) ( ) ( ) ( )kkup,qPkrd,qDc,k ξε =−= ∗∗∗  (23) 
and 
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respectively, if and only if 
 ( ) ( )∗−= d,qD,qHO

1ϕ . (25) 

In such a case, the prediction error from Eq. (23) has zero 
mean ( ){ } 0=Ε ∗c,kε  and its correlation function could be 
expressed by the formula 
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It follows, that the prediction error model gives the minimal 
value of criterion Eq. (24) for ∗= cc  when ( )ϕ,qH0  is of the 
form Eq. (25). It also means that the stochastic disturbance 
v(k), k=1,2,… is an autoregressive (AR) process that is 
generated by filtering a white noise sequence ξ(k), k=1,2,… 
and its correlation function could be expressed by the formula 
by a filter of the form Eq. (25) [6]. 

III. THE RECURSIVE ESTIMATION PROCEDURE 

For the estimation of unknown parameters, the ordinary 
prediction error method, based on the RLS of the form 
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could be used with the vector of observations 
 ( ) ( ) ( ) ( ) ( )[ ]nku,,ku,wkr,,krkzT −−−−−−= KK 11  (29) 
and some initial values of the vector ( )0ĉ  and covariance 
matrix ( )0P . 

Here 
 ( ) ( ) ( ) ( )1−−= kĉkzkrkˆ Tε  (30) 
is the current k-th value of the prediction error and ( )kĉ  is a 
current estimate of the parameter vector 
 [ ]Tnw p,,p,p,d,,d,dc KK 1021= , (31) 
assuming that 10 =d . The next step is to calculate the current 
k-th value of the auxiliary input according to the formula 
 ( ) ( )( ) ( )krkĉ,qCkû 1−= , (32) 
assuming that ( )( )kĉ,qC  is inversely stable on each k-th 
iteration. Then the current estimates of the parameters vector 
 [ ]Tmm b,,b,b,a,,a,a KK 1021=θ  (33) 
could be determined by the RLS with the vector of 
observations 
 ( ) ( ) ( ) ( ) ( )[ ]mkû,,kû,mky,,kykz~T −−−−−−= KK 11  (34) 
and a current k-th value of the prediction error 
 ( ) ( ) ( ) ( )11 −−= kˆkz~kykˆ T θε . (35) 

In the case of the known regulator the system is acting 
according to the scheme shown in the Fig. 2. Then the 
estimation procedure is completely simplified, because the 
problem is only in determining the parameters 

[ ]Tmm b,,b,b,a,,a,a KK 1021=θ , using the RLS with the 
vector of observations 
 ( ) ( ) ( ) ( ) ( )[ ]mku,,ku,mkr,,krkz **T −−−−−−= KK 11 ,(36) 
where 

1−
RG  

GO 

HO 
ξ(k) 

r(k) u(k) 

D
P  

HO 
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r(k) u(k) 
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 ( ) ( ) ( ) ( )ku,qGkrkr R
* α1−−=  (37) 

and a current k-th value of the prediction error 
 ( ) ( ) ( ) ( )12 −−= kˆkzkrkˆ T* θε . (38) 

IV. THE TWO-STAGE METHOD IN A PRESENCE OF 
OUTLIERS IN OBSERVATIONS 

Assume now that the white noise ξ(k), k=1,2,… really is a 
sequence of independent identically distributed variables with 
an εf-contaminated distribution of the form [3] 
 ( )( ) ( ) ( ) ( )22 001 ζμ σεσεξ ,N,Nkf ff +−=  (39) 
and the variance 
 ( ) 222 1 ζμξ σεσεσ ff +−= . (40) 
Here ( )( )kf ξ  is the probability density distribution of the 
sequence ξ(k), k=1,2,…; 
 ( ) ( ) kkkkk ζγμγξ +−= 1  (41) 

is the value of ξ(k), k=1,2,… at a time moment k; γ is a 
random variable, taking values 0 or 1 with probabilities 
( ) fkp εγ −== 10 , ( ) fkp εγ ==1 ; μk and ζk are sequences of 

independent Gaussian variables with zero means and 
variances 22

ζμ σσ , , respectively; besides ζμ σσ < ; 10 ≤≤ fε  
is the unknown fraction of contamination [2]. 

Given the model Eq. (14) and measured data Eq. (5) and 
assuming that ξ(k), k=1,2,…is a process of the form Eqs. (39), 
(40) and (41), is determined the robust M-estimate, based on 
prediction error Eq. (21), of the parameter vector Eq. (31) by 
minimizing 
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or by solving the equation in the vector form 
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Here Nĉ  is the estimate, determined by processing N pairs of 
the reference signal and input samples; s is the robust scale 
estimate of prediction errors; ρ is a symmetric, positive-
definite contrast function with unique minimum at zero and is 
chosen to be less increasing than square; the influence 
function ρψ ′=  measures the influence of data on the value 
of the parameter estimate [1]. 

It is known that in both such cases, i.e. 0≠fε  and 

( ) ( )d,qD,qHO
1−=ϕ  [5], current M-estimate of unknown 

parameters can be calculated using three robust techniques: 
- the S-algorithm 
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If ( ) 0=′ xψ  than ( )xψ ′  have to be replaced with ( )xx ψ1− . 

- the H-algorithm 
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- the W-algorithm 
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On the base on the prediction error from Eq. (30) in the last 

equations are introduced symbols 

 ( ) ( )
s
kˆ

k εα = ; (50) 

 ( ) ( )[ ]ksk αψβ = ; (51) 
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The S-algorithm represents a version of the algorithm 
proposed by Polyak and Cypkin for an on-line robust 
identification of parameters of the linear dynamic model [5], 
[6]. The robusting of the ordinary RLS follows by substituting 
the “winsorization” step of the residuals in Eq. (27) and by 
modification in computing of the covariance matrix in 
Eqs. (27) and (28). The recursive H-algorithm is obtained only 
by inserting the winsorization” step in Eq. (27). The W-
algorithm is obtained by inserting different weights from 
Eq. (52) in respect to the influence function into the already 
existing ordinary RLS. 
The mostly used influence function is [3] 
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with given robust factor 21 << Hc . In this case modifications 
in computing of the covariance matrix are equivalent for S- 
algorithm and W-algorithm. Consequently, the S-algorithm 
combines robust performances of the other two algorithms. 

These algorithms are based on robust M-estimators of 
Huber which reduce influence of observations only if 
corresponding residuals are big. GM-estimators downweight 
“vertical” outliers and “leverage points” [1], [4]. 

For defining GM estimators in this paper are changed 
Eqs. (51) and (52) with  
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correspondingly. Here 1zw  and 2zw are additional weights of 
observations to one’s choice estimator’s type: 

- Huber’s M-estimator (MHUB) 
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 121 == zz ww ; (56) 
- Mallows’ GM-estimator (GMM) 

 ( )[ ]
12

1

=
=

z

zz

w
khww ; (57) 

- Schweppe’s GM-estimator (GMS) 
 ( )[ ]khwww zzz == 21 . (58) 

Here ( )[ ] ( )khkhwz −= 1  and h(k) is k-th diagonal element of 
the hat matrix H [1] 
 ( ) TT ZZZZH

1−
= . (59) 

The current k-th diagonal element can be calculated according 
to the formula [1] 
 ( ) ( ) ( ) ( )kzkPkzkh T= . (60) 
There is the prediction error based on the estimates from the 
previous iteration in Eqs. (27) and (50). The prediction 
accuracy can be increased if the prediction error based on the 
estimates from the new iteration is used 

 ( ) ( ) ( ) ( )kĉkzkrkˆ T
new −=ε , (61) 

The current k-th value of this error can be calculated 
according to the formula [1] 
 ( ) ( )[ ] ( )kˆkhkˆ new εε −= 1 . (62) 

V. NUMERICAL SIMULATION 

The closed-loop system to be simulated is described by 
linear difference equations of the form [6] 
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. (63) 

where ξ(k), k=1,2,…is a process described by Eqs. (39), (40) 
and (41). 

Eqs. (63) determine model structure and true values of the 
parameters to be estimated on the first and second stage 
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correspondingly. 
The sequences, including that kind of noise ξ(k), 

k=1,2,…,200 with different parameters, are generated using 
MATLAB. The respective experiments are shortly described 
by abbreviation Ji1;i2;i3. Here subscripts denote: i1 is the noise 

contamination part εf in Eq. (39) in [%]; 
μ

ζ

σ
σ

=2i  in Eq. (40); 

oy

i
σ
σξ=3  in [%] (yo is y in the absence of additive noise). 

The basis of identification are data sets Eq. (6) with N=200. 
The first 20 pairs of signals are processed by non recursive 
robust estimators in order to obtain the initial off-line 
estimates of the vectors c and θ. 

Afterwards, the recursive estimation is performed. Four 
estimators are applied: RLS (1); Huber’s M-estimator based 
on S-algorithm (2); Mallows’ GM-estimator based on S-
algorithm (3); Schweppe’s GM-estimator based on S-
algorithm (4). 

Bar-diagrams of relative mean-squared errors for the 
estimated parameters relative to the true parameters of the last 
iteration are shown at the Figs. 4 and 5. 
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Fig. 4. Bar-diagram (J5;10;10)       Fig. 5. Bar-diagram (J10;10;10) 

First four columns correspond with estimates of parameters 
of ( )c,qC  shown in Eq. (64) as the number of described 
above estimators correspond with the number of column. 
Second four columns correspond with estimates of parameters 
of ( )θ,qG0  shown in Eq. (65) as the number of described 
above estimators are retained from 5 to 8. 

VI. CONCLUTION 
The outliers have a strong influence over the quality of 

parameter estimates in closed- loop identification. 
The joint input-output approach regards the input and 

output both together as the output of some augmented system 
excited by some extra input or a set-point signal and noise. 

In the case of an additive correlated noise with outliers, the 
accuracy of all represent robust estimators is bigger than the 
RLS accuracy. 

The S-algorithm combines robust performances of the H 
and W algorithms if the influence function is Huber’s one. 

When the contamination increases the accuracy of GM-
estimators is bigger than the accuracy of M-estimators, 
because of a presentation of well known from the regression 
theory leverage points. 
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