
 

FPGA Implementation of the 2D-DCT/IDCT for the 
Motion Picture Compression 

Rastislav J.R. Struharik1 and Ivan Mezei2 

Abstract – In this paper architectures for the 2D DCT/IDCT 
(Discrete Cosine Transform, Inverse Discrete Cosine Transform) 
are presented. These architectures were developed for the FPGA 
implementation. First, algorithms for the efficient 2D DCT/IDCT 
calculation are presented. Using these algorithms micro-
architectures for the efficient FPGA implementation are 
developed. These micro-architectures are then coded in the 
VHDL and synthesized using Xilinx Foundation ISE 
development system. Finally, maximum operating frequency and 
resources needed for the implementation of these cores are 
reported for the several families of Xilinx’s FPGA IC’s. 
 

Keywords – Image Compression, JPEG, 2D DCT/IDCT, 
VHDL, FPGA. 

I. INTRODUCTION 

Compression is the process of reducing the size of the data 
sent, thereby, reducing the bandwidth required for the digital 
representation of a signal. Many inexpensive video and audio 
applications are made possible by the compression of signals. 
Compression technology can result in reduced transmission 
time due to less data being transmitted. It also decreases the 
storage requirements because there is less data. However, 
signal quality, implementation complexity, and the 
introduction of communication delay are potential negative 
factors that should be considered when choosing compression 
technology. 

Video and audio signals can be compressed because of the 
spatial, spectral, and temporal correlation inherent in these 
signals. Spatial correlation is the correlation between 
neighboring samples in an image frame. Temporal refers to 
correlation between samples in different frames but in the 
same pixel position. Spectral correlation is the correlation 
between samples of the same source from multiple sensors. 

There are two categories of compression: lossy and lossless. 
In medical system applications, image losses can translate into 
costly medical mistakes; therefore, lossless compression 
methods are used. Fortunately, the majority of video and 
image processing applications do not require the reconstructed 
data to be identical to the original data. In such applications, 
lossy compression schemes can be used to achieve higher 
compression ratios. 

Discrete Cosine Transform (DCT) [1] is a lossy 

compression scheme where an N x N image block is 
transformed from the spatial domain to the DCT domain. 
DCT decomposes the signal into spatial frequency 
components called DCT coefficients. The lower frequency 
DCT coefficients appear toward the upper left-hand corner of 
the DCT matrix, and the higher frequency coefficients are in 
the lower right-hand corner of the DCT matrix. Because the 
human visual system is less sensitive to errors in high 
frequency coefficients than it is to lower frequency 
coefficients, the higher frequency components can be more 
finely quantized, or even completely discarded. This operation 
leads to the significant improvements of the compression 
ratio, thereby reducing the amount of data that needs to be 
transmitted or stored, with only moderate degradation of the 
original picture quality.  

For most image compression standards, N = 8. An 8 x 8 
block size does not have significant memory requirements, 
and furthermore, a block size greater than 8 x 8 does not offer 
significantly better compression. 

DCT is image independent and can be performed with fast 
algorithms. Examples of standards using DCT: 

• Dolby AC2 & AC3: 1-D DCT (and 1-D Discrete Sine 
Transform) 

• JPEG (still images): 2-D DCT spatial compression 
• MPEG1 & MPEG2: 2-D DCT plus motion compensation 
• H.261 and H.263: moving image compression for video 

conferencing and video telephony 
Much of the processing required to encode or decode video 

using these standards is taken up by calculating the DCT 
and/or IDCT. An efficient hardware block dedicated to these 
functions will improve the performance of the digital video 
system considerably. 

 

II. EFFICIENT ALGORITHMS FOR THE 2D DCT/IDCT 
CALCULATION 

A. Algorithm for the Efficient 2D DCT Calculation 

The algorithm used for the calculation of the 2D DCT is 
based on the following equation: 

 ( ) ( )1 1

0 0

2 1 2 1( ) ( ) cos cos
4 2 2

M N

pq mn
m n

m p n qc p c qY X
M N

π π− −

= =

+ +⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑   (1) 

where: 

1Rastislav J.R. Struharik is with the Faculty of Technical Sciences,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia, E-mail: 
rasti@eunet.yu  

2Ivan Mezei is with the Faculty of Technical Sciences, Trg 
Dositeja Obradovića 6, 21000 Novi Sad, Serbia, E-mail: 
imezei@uns.ns.ac.yu 

499



FPGA Implementation of the 2D-DCT/IDCT for the Motion Picture Compression 

 

1( ) 0, ( ) 1
2

1( ) 0, ( ) 1
2

c p for p c p otherwise

c q for q c q otherwise

= = =

= = =
  (2) 

Efficient implementation of this equation is possible 
because 2D DCT can be separated into two 1D DCT [2]. First, 
the 1D DCT of the rows are calculated and then the 1D DCT 
of the columns are calculated. The 1D DCT coefficients for 
the rows and columns can be calculated by separating 
equation (1) into the row part and the column part. As stated 
before, for most image compression standards, M=N=8. 
Using vector processing, the output Y of an 8 x 8 DCT for 
input X is given by the following equation. 

 tY C X C= ⋅ ⋅   (3) 

C is the cosine coefficients and Ct are the transpose 
coefficients. This equation can also be written as Y=C·Z, 
where Z = X·Ct. Coefficients for the C and Ct matrix can be 
calculated using the following equations. 

 

( )

( )

2 1 1 2cos , 0,
2

2 1 1 2cos , 0,
2

ij

t
ij

i j
C K K for j K else

M N N
j i

C K K for i K else
N M M

π

π

+
= = = =

+
= = = =

  (4) 

Values for the scaled and rounded coefficients are 
presented in the following equation. 

 

23170 23170 23170 23170 23170 23170 23170 23170
32138 27246 18205 6393 6393 18205 27246 32138
30274 12540 12540 30274 30274 12540 12540 30274
27246 6393 32138 18205 18205 32138 6393 27246
23170 23170 23170 23170 23170 2

C

− − − −
− − − −

− − − − −
=

− − − 3170 23170 23170
18205 32138 6393 27246 27246 6393 32138 18205
12540 30274 30274 12540 12540 30274 30274 12540
6393 18205 27246 32138 32138 27246 18205 6393

23170 32138 30274 27246 23170 182

tC

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥

− − − − −⎢ ⎥⎣ ⎦

=

05 12540 6393
23170 27246 12540 6393 23170 32138 30274 18205
23170 18205 12540 32138 23170 6393 30274 27240
23170 6393 30274 18205 23170 27246 12540 32138
23170 6393 30274 18205 23170 27246 12540 32138
23170 18205 12540

− − − − −
− − −
− − − −

− − − −
− − 32138 23170 6393 30274 27246

23170 27246 12540 6393 23170 23138 30274 18205
23170 32138 30247 27246 23170 18205 12540 6393

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − −⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

 (5) 

Structure of the 2D DCT core using this decomposition is 
presented on the following figure. 

 
Fig. 1 Efficient 2D DCT Implementation 

 Let us explain the way the Z matrix is calculated. Each 
element in the first row of the input matrix X are multiplied 
by each element in the first column of matrix Ct and added 
together to get the first value Z00 of the intermediate matrix Z. 
To get Z01, each element of row zero in X is multiplied by 
each element in the first column of Ct and added and so on. 
The calculation can be implemented using eight multipliers 

and storing the coefficients in ROMs. But, after a closer 
examination of the coefficients from the Ct matrix there is a 
way to half the number of multipliers. When the equation  
Z = X·Ct is written in the scalar form we get following 
equations. 

 

k0 k0 k1 k2 k3 k4 k5 k6 k7

k1 k0 k7 k1 k6 k2 k5 k3 k4

k2 k0 k7 k1 k6 k2 k5 k3 k4

k3 k0 k7 k1 k6

Z =23170(x +x +x +x +x +x +x +x )
Z =32138(x -x )+27246(x -x )+18205(x -x )+6393(x -x )
Z =30274(x +x )+12540(x +x )-12540(x +x )-30274(x +x )
Z =27246(x -x )-6393(x -x )- k2 k5 k3 k4

k4 k0 k7 k1 k6 k2 k5 k3 k4

k5 k0 k7 k1 k6 k2 k5 k3 k4

k6 k0 k7 k1 k6 k2 k

32138(x -x )-18205(x -x )
Z =23170(x +x )-23170(x +x )-23170(x +x )+23170(x +x )
Z =18205(x -x )-32138(x -x )+6393(x -x )+27246(x -x )
Z =12540(x +x )-30274(x +x )+30274(x +x 5 k3 k4

k7 k0 k7 k1 k6 k2 k5 k3 k4

)-12540(x +x )
Z =6393(x -x )-18205(x -x )+27246(x -x )-32138(x -x )
k=0, 1, ..., 7

 (7) 

We can see that for example, input values xk0 and xk7 are 
always multiplied by the same coefficient, only the sign can 
change. This can be efficiently explored to reduce the number 
of multipliers as shown on the following figure. 

 
Fig. 2 Efficient 1D DCT Implementation 

  Using the toggle signal the adder/subtractor modules can 
be configured to operate as adder or as subtractor depending 
on the current need.  

All 64 values for the matrix Z can be calculated in 64 clock 
cycles. These values are stored in the RAM memory shown 
between two 1D DCT block on Fig. 1. Using these stored 
values as input, second 1D DCT is performed resulting in the 
matrix Y. Structure of this second 1D DCT block is similar to 
the structure shown on the Fig. 2. Matrix Y holds the values 
for the 2D DCT transform of the input matrix X. 

B. Algorithm for the Efficient 2D IDCT Calculation 

Now let us examine the problem of calculating the 2D 
IDCT. Using the 2D DCT matrix Y, original input matrix X 
can be calculated in the following way [3]. 

500



Rastislav J.R. Struharik and Ivan Mezei 

 tX C Y C= ⋅ ⋅   (7) 

Matrix C and Ct are identical to those from 2D DCT. We 
can see that the only difference between Eq. (3) and (7) is in 
the order by which the matrix C and Ct are applied. Although 
this seems to be only a minor difference, it turns out to be a 
significant one, because now we cannot explore the 
coefficient symmetries like in the case of the 2D DCT. Once 
more the Eq. (7) can be split into two simpler equations, 
X=Ct·Z, and Z = Y·C. Because the different order of matrix 
multiplications, we cannot find the similar symmetry between 
the coefficients during the 1D IDCT operations. This means 
that every 1D IDCT block will now use eight multipliers. 
Structure of the 1D IDCT block is presented on the Fig. 3. 

 
Fig. 3 Structure of the 1D IDCT Module 

Basic structure and operation of the 2D IDCT core is 
identical to that of 2D DCT core presented on Fig. 1.  

C. Algorithm for the Quantization/Dequantization Operations 

As stated before, to improve the compression ratio it is 
common practice to perform the quantization of DCT 
components. Quantization is the process of selectively 
discarding visual information without a significant loss in the 
visual effect. Quantization reduces the number of bits needed 
to store an integer value by reducing the precision of the 
integer. Each DCT component is divided by a separate 
quantization coefficient, and rounded to the nearest integer. 
The larger the quantization coefficient (i.e., coefficient 
weighting), the smaller the resulting answer and associated 
bits needed to express the DCT component. In the reverse 
process, the fractional bits are "rounded" and are recovered as 
zeros, constituting a precision loss from the original number. 

There are several different recommended procedures to 
perform the quantization. We have opted for the procedure 
used in the MPEG-2 compression standard [4]. Since we used 
a 12-bit representation of the DCT components, DC value was 

not quantized. For the AC components following formula is 
used to determine the value of the quantization factor. 

 

32

2

ij

ij
ij

DCT
Qmatrix Qscale

QDCT

⎡ ⎤⋅
⎢ ⎥

⋅⎢ ⎥⎣ ⎦=   (8) 

Value of the Qmatrix is the matrix of the quantization 
coefficients with the following values depending whether we 
are quantizing luminance or chrominance components. 

 

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

17 18 24 47 9

luma

chroma

Qmatrix

Qmatrix

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

9 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (9) 

Value of the Qscale parameter enables easy modifications 
of the quantization factors that will be used during the 
quantization. Dequantization is performed using the inverse 
expression of the expression in Eq. (8). 

III. ARCHITECTURE OF THE DEVELOPED 2D 
DCT/IDCT CORES 

After reviewing the efficient algorithms for the 2D 
DCT/IDCT calculations we can now present the basic 
architecture for the two developed cores, together with their 
interfaces.  

Fig. 4 presents the interfaces for the 2D DCT and 2D IDCT 
cores. 

 
Fig. 4 Interface of the 2D DCT and 2D IDCT Cores 

As can be seen from the Fig. 4 interface of both cores is the 
same. Input signal q_tab_i[5:0] is used to define the required 

501



FPGA Implementation of the 2D-DCT/IDCT for the Motion Picture Compression 

value of the Qscale parameter in the quantization and 
dequantization operations. Input signals, cb_en_i, cr_en_i and 
y_en_i are used to specify the type of the current 8x8 block. 
Both cores assume that the picture is represented in the 
YCbCr format. Signal mb_trig_i is a global synchronizing 
signal used to indicate the start of the next 8x8 block.  Input 
signal data_i[7:0] (data_i[11:0] in the case of 2D IDCT core) 
holds the pixel values (DCT component values in case of 2D 
IDCT core). Meaning of every output signal is identical to the 
input signal with the same name. Fig. 5 presents the basic 
architecture for the 2D DCT/IDCT cores. 

 
Fig. 5 Interface of the 2D DCT (up) and 2D IDCT (down) Cores 

In every core there are three pipeline stages. This enables 
efficient calculation of the DCT or IDCT values that requires 
only 64 clock cycles per one 8x8 block. This is the maximum 
speed at which both cores can operate, but if needed they can 
work at slower speed. Fig. 6 illustrates the typical waveforms 
for the characteristic signals. 

 
Fig. 6 Typical waveforms of the interface signals for the 2D 

DCT/IDCT Cores  

Previous figure illustrates the interface signal waveforms in 
case of 256 clock cycle duration of one 8x8 block.  

IV. SYNTHESIS RESULTS 

Both cores were coded in VHDL and synthesized using 
Xilinx Foundation ISE 6.2i software. Following table presents 
the obtained results in terms or core size (number of slices 
required to implement the core) and maximum operating 
frequency for several Xilinx FPGA families. 

TABLE I 
SYNTHESIS RESULTS (OPTIMIZATION GOAL: SIZE) 

2D DCT Core 2D IDCT Core FPGA 
Family Core Size 

(# slices) 
Core 
Speed 

Core Size 
(# slices) 

Core 
Speed 

SpartanIIE 3777 24.9 
MHz 4525 22.7 

MHz 

SpartanIII 1214 47.8 
MHz 1222 43.4 

MHz 

Virtex 3776 18.8 
MHz 4525 17.3 

MHz 

Virtex2Pro 977 43.7 
MHz 971 40.1 

MHz 

TABLE II 
SYNTHESIS RESULTS (OPTIMIZATION GOAL: SPEED) 

2D DCT Core 2D IDCT Core FPGA 
Family Core Size 

(# slices) 
Core 
Speed 

Core Size 
(# slices) 

Core 
Speed 

SpartanIIE 3794 28.4 
MHz 4657 26.0 

MHz 

SpartanIII 1268 51.1 
MHz 1264 47.4 

MHz 

Virtex 3850 22.3 
MHz 4657 21.0 

MHz 

Virtex2Pro 1036 46.2 
MHz 1059 43.5 

MHz 

Significantly smaller cores sizes in case of the SpartanIII 
and Virtex2Pro FPGA families are due to the fact that these 
families have dedicated multipliers that can be used to 
implement all the multiplications required in the DCT/IDCT 
calculations. In contrast, SpartanIIE and Virtex families don’t 
have dedicated multipliers embedded on the chip, so every 
multiplier has to be implement using the general purpose logic 
resources, resulting in larger core sizes. 

V. CONCLUSION 

In this paper hardware implementation of the 2D 
DCT/IDCT cores was investigated. Efficient algorithms for 
the calculation of the 2D DCT/IDCT values were proposed. 
These algorithms were implemented in hardware using the 
FPGA technology. Using the Xilinx Foundation ISE software 
synthesis results for several available FPGA families were 
reported. 

REFERENCES 

[1] M. Popović, “Digitalna Obrada Signala”, Beograd, Nauka, 
1997. 

[2] Xilinx Application Note XAPP610, “Video Compression Using 
DCT” 

[3] Xilinx Application Note XAPP611, “Video Decompression 
Using IDCT” 

[4] Xilinx Application Note XAPP615, “Quantization” 

502


