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Abstract – In the first part of this paper TLS and Hankel TLS 
algorythms for determination of parameters for sinusoidal and 
exponential sinusoidal model of audio and speech signal are 
described. In the second part performances of exponential 
sinusoidal model are determined and a comparative analysis of a 
model for the case of segment processing with the distinguished 
and poorly distingushed transiency is performed. In the analysis 
tabular data and time and frequency diagrams are used. 
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I. INTRODUCTION 

The sinusoidal model (SM) is suitable for representing the 
harmonic structure of the speech and audio segments. Special 
conveniences can be seen in speech analysis/synthesis [1,2], 
speech modification [3], speech coding [4,5] and audio coding 
[6,7]. The sinusoidal model for the speech and audio signal 
s(n) can be presented in the following form: 
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In the sinusoidal model the signal s(n) is presented as a 
summary of components with time variable amplitude ak, 
frequency fk and phase φk. These parameters are often 
invariable or slowly variable in the time of analysis (duration 
time of an analyzed sequence, i.e. segment). Depending on the 
signal the length of the quasi-stationary segment varies from 
several ms to several hundreds  ms [8].  

Speech and audio signals often contain segments with 
superimposed noise as well as segments with transient sound. 
In such cases the model described by means of (1) does not 
give satisfying results. In [9] shows the model for presenting 
the audio signal created by enlarging the model described with 
(1) by adding the noise η(n) and transient segment τ(n): 
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In standards for audio signal coding, such as MPEG-1 LI, 
using of model (2) is not explicitly foreseen. The 
subcomprehensive coding structure [10] is being used instead. 
The subcomprehensive coding is efficient for coding signal 

with superimposed noise in a wide frequency range. However, 
when coding signals with transient segments, the efficiency is 
considerably smaller. Generally seen, transient sound is 
difficult to model by means of the sinusoidal model. More 
qualitative modeling can be achieved by enlarging the number 
of model parameters, which reduces coding efficiency. For 
that reason in some coding schemes detecting of transient 
segments and selecting the code structure with enlarged 
resolutions in time domain is done first. 

One way of solving this problem is audio signal modeling 
and coding by using of superposition of sinusoid with time 
slow exponential changes of amplitudes and quasistationary 
noise  η(n): 
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where dk is damping factor of the k-th component. The 
exponential sinusoidal model (ESM) is described in [11]. Its 
efficiency in modeling transient segments is presented in 
[12,13]. Determination of model parameters (amplitude ak, 
frequency fk, phase φk and damping factor dk) is numerically 
complex and demands a lot of calculation time. 

In this paper algorithms for determining parameters of the 
exponential sinuous model are described and their 
performances are determined. 

The organization of this paper is as follows. In Section II 
TLS-ESM algorithm is described. In Section III Hankel TLS 
algorithm for forming of model parameters is described. In 
Section IV results of the comparative analysis of the 
application of SM and ESM models in transient and non-
transient sequences are presented. 

II. TLS-ESM ALGORITHM 

TLS (Total Least Squares) algorithm is used for 
determining parameters of the exponential sinuous model 
[14]. For the inlet segment s(n), n=1,...,N, by TLS algorithm 
parameters of the model of L order ( ( ) L1,...,l lb =, ) are being 
determined on the condition of minimizing: 
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Equation (5) can be written in the form of: 
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where the damping factor dk can be positive, negative or zero. 
By comparing of equations (3) and (6) it can be seen that it is 
possible to apply TLS algorithm for determining parameters 
of ESM model, i.e. for automatic decomposition of an audio 
sequence in a certain number of damped sinusoids [15]. 

III. HANKEL TLS ALGORITHM 

Due to its great calculation efficiency, Hankel TLS (HTLS) 
algorithm is used for solving TLS problems. HTLS algorithm 
has found its intensive application in nuclear magnetic 
resonance spectroscopy. In the [15] HTLS algorithm is 
described that for inlet parameters: a) sequence s(n), n=1,...,N; 
and b) model order Ke; generates parameters of the estimated 
sinusoids (amplitude kâ , frequency kf̂ , phase kψ̂ , damping 

factors kd̂ ). The algorithm consists of the following steps: 
Step 1: Out of sequence elements s(n) Hankel matrix H 

with dimensions mxn is formed. 
Step 2: SVD (singular value decomposition) of matrix H is 

determined: 

 HUSVH = . (7) 

Step 3: Shortened matrices of Ke rank are constructed: 

 H
KKK eee VSUH =ˆ , (8) 

where UKe contains the first Ke columns of the matrix U, VKe 
contains the first Ke columns of the matrix V, whereas SKe  is 
the submatrix (Ke  x Ke) of the matrix S. 

Step 4: TLS is calculated for the predefined equation 
system: 

 EUU
ee KK ≈ , (9) 

where eKU  is obtained from the matrix UKe after eliminating 
the first row, 

eKU is obtained from the matrix UKe after 

eliminating the last rowg. Ke values of E are used for 
estimation of signal poles: 
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Step 5: The equation of the model is formed on the base of 
signal poles: 
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Taking into consideration that the poles are conjugated 
complex, the model described with (11) can be presented in a 
reduced form: 
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where 
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The model described with (13) is equivalent to the ESM 
model described with (3). 

Detailed description of HTLS algorithm can be found in [8, 
16]. 

IV. PERFORMANCES OF ESM MODEL 

Performances of ESM model with implemented HTLS 
algorithm will be determined by means of signal-noise ratio 
(SNR) that is defined in (8): 
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Thus defined SNR represents a measure of precision of the 
modeled signal in relation to the original signal. 

Further analyses were carried out on the archivated speech 
signal whose sampling frequency is FS=22.050 kHz, by means 
of a mathematical packet MatLab. Comparative analyses will 
be performed by an analysis in time and frequency domains 
on: a) the original speech signal (s), b) the speech signal 
modeled by means of an sinusoidal model (sSM) and c) the 
speech signal modeled by means of an exponential sinusoidal 
model (sESM). The following examples relate to two types of 
sequences: a) with not so outstanding transience (signal 
sequences where periodicalness is expressed) and b) with an 
outstanding trasiency. 

IV.A. Sequencies with not so outstanding transienceitle 

Examples of sequences of speech and audio signals with 
not so outstanding transience are presented in Fig. 1 where the 
original signal s is shown and modeled signals sSM and sSM for 
Ke=32. In Fig. 2 the same signals for Ke=128 are shown. In 
these sequences the signal periodicalness can be seen 
(pronunciation of vowels, musical signal etc.). 

IV.A.  Sequences with outstanding transience 

Sequences of speech signal with an outstanding effect of 
transience are modeled for some values of model order Ke  
(Ke=4,8,16,32,64,128). Time forms of signals are presented in 
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Fig. 3 (Ke=32) and Fig. 5 (Ke=128). The signal spectra are 
determined by means of FFT and presented in Fig.4 (Ke=32) 
and Fig. 6 (Ke=128). 

 
Fig. 1. The sequence of the speech signal for the word 'five' with not 
so outstanding transience: a) s the original signal, b)  sESM 
reconstructed signal on the base of the estimated parameters of ESM 
model and c) sSM  reconstructed signal on the base of the estimated 
parameters of SM model (Fs=22.050 kHz,Ke=32). 

 
Fig. 2. The sequence of the speech signal for the word 'five' with not 
so outstanding transience: a) s the original signal, b)  sESM 
reconstructed signal on the base of the estimated parameters of ESM 
model and c) sSM  reconstructed signal on the base of the estimated 
parameters of SM model (Fs=22.050 kHz,Ke=128). 

 
Fig. 3. Transient segment of the speech signal for the word 'five': a) s 
the original signal, b) sESM reconstructed signal on the base of the 
estimated parameters of ESM model and c) sSM reconstructed signal 
on the base of estimated parameters of SM model (Fs=22.050 
kHz,Ke=32) 

 
Fig. 4. Spectrum of the transient segment of the speech signal for the 
word 'five': a)  s the original signal, b) sESM reconstructed signal on 
the base of the estimated parameters of ESM model and c) sSM 
reconstructed signal on the base of the estimated parameters of SM 
model (Fs=22.050 kHz,Ke=32) 

 
Fig. 5. Transient segment of the speech signal for the word 'five': a) s 
the original signal, b) sESM reconstructed signal on the base of the 
estimated parameters of ESM model and c) sSM reconstructed signal 
on the base of estimated parameters of SM model (Fs=22.050 
kHz,Ke=128). 

 

 
Fig. 6. Spectrum of the transient segment of the speech signal for the 
word 'five': a)  s the original signal, b) sESM reconstructed signal on 
the base of the estimated parameters of ESM model and c) sSM 
reconstructed signal on the base of the estimated parameters of SM 
model (Fs=22.050 kHz,Ke=128). 
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In Table 1 results of SNR at the sinusoidal and exponential 
model for the transient and weakly present transience are 
presented. 

TABLE I 
ADVANTAGES OF SNR FOR A) TRANSIENT AND B) NOT SO 

OUTSTANDING TRANSIENT SEGMENT FOR THE CASE OF THE 
APPLICATION OF SINUOUS AND EXPONENTIAL SINUOUS 

MODEL, DEPENDING ON THE MODEL ORDER 

Transient Not so outstanding 
transient 

Ke 

SNRSM SNRESM SNRSM SNRESM 
4 0.1690 3.0173 6.0962 6.2688 
8 0.4863 6.3888 9.8830 10.415 

16 0.6693 8.3856 6.8996 11.7304 
32 0.2837 14.637 4.4636 15.9509 
64 0.1115 22.5617 3.5876 19.7519 

128 0.1650 27.9215 5.2516 27.8634 
mean 
values 

0.3141 13.8186 6.03 15.33 

 
On the base of time and frequency diagrams, as well as on 

the base of tabular data for SNR it should be concluded that 
the ESM model is superior in relation to the SM model. It 
special advantage is in regard to modeling of signals in 
transient sequences. In the transient sequence the relation of 
the mean values is 13.8186/0.311=43.99, whereas in the 
sequence with not so outstanding transience the relation is 
2.54. 

V. CONCLUSION 

In this paper the exponential sinusoidal audio model with 
the implemented HTLS algorithm is described. In the second 
part of this paper the results of testing the application of the 
sinusoidal and exponential model in modeling the speech 
signal are presented. Modeling was performed for various 
operating parameters of the model. As a measure of 
successfulness, i.e. of precision of modeling, SNR was used. 
Analysis of the obtained results points to the greater efficiency 
of ESM in relation to SM in all the values of the model order. 
In addition to that, the results demonstrate great efficiency in 
transient segments, i.e., in the concrete example, 43.99 times 
in relation to SM model. The results testify that the 
application of ESM model for the speech and audio signal 
compression is justified in archivating and transition by 
communication. 
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