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Abstract – This paper presents experimental results obtained 
using a method that we propose for signal denoising. Noisy 
signals are processed in a discrete wavelet transform domain 
with a non-uniform threshold adjusted to the noise level. 
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I. INTRODUCTION 

There are many methods for noise removal, but very few of 
them focus on removing varying noise that depends on the 
local intensity of the signal. This kind of signal-dependent 
noise is commonly found in nuclear medicine (NM) images. 
Until now, the offered methods have been based on 
conventional filtering in time and frequency domain and 
lately, wavelet transforms. Research to date in wavelet-
domain filtering has focused on removing Gaussian noise by 
using a global threshold that is independent on the signal or by 
multiscale products of the detail coefficients [1-3]. These 
methods are inappropriate for denoising signals that contain 
signal-dependent noise. One simple fix would be to work with 
the square-root of the image, since this operation is variance 
stabilizing [1]. Another method for Poisson noise removal in 
the wavelet domain uses a non-uniform threshold for filtering 
the noisy wavelet coefficients [4]. 

In this paper we present results obtained using our method 
for removal of signal-dependent noise. It is based on 
generating non-uniform threshold adjusted to the noise level 
in the signal. It is organized as follows. The standard wavelet 
shrinkage program is outlined in Section II. In Section III we 
discuss how to estimate the varying threshold. In Section IV 
we verify the validity of our approach on 1-D deterministic 
signal contaminated with artificially added noise proportional 
to the signal intensity. At the end, Section V concludes the 
paper. 

II. WAVELET DOMAIN FILTERING 

In series expansion of discrete-time function f using 
wavelets 
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ψjk and φjk denote wavelet and scaling function, respectively, 
the indexes j and k are for dilatation and translation, and aJk 
and djk are approximation and detail coefficients.  

The most popular form of wavelet-based filtering, wavelet 
shrinkage [1], is performed by weighting the corresponding 
detail wavelet coefficient by hik (0 ≤ hjk ≤ 1) and calculating 
the inverse wavelet transformation. Conventionally, the 
filtration is performed either by using “hard threshold” 
nonlinearity  
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or by using “soft threshold” nonlinearity 
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where τj is a user-specified threshold level.  

III. ESTIMATING NON-UNIFORM THRESHOLD 

Let y denotes a noisy signal that consists of a noise-free 
signal s and noise n with zero mean value and energy 
proportional to the local signal intensity: 

 y = s + n. (4) 

For this signal the wavelet transform (WT) satisfies 

 WT(y) = WT(s) + WT(n). (5) 

Let A and D denote the approximation and detail wavelet 
coefficients obtained with wavelet transform of the signal y. 
Since the noise is proportional to the local signal intensity, a 
threshold τj for filtering of all the detail wavelet coefficients D 
should not be uniform, but it should follow the local signal 
intensity. Hence, a non-uniform threshold could be 
determined as τ = α|A| where α is a constant parameter which 
could be determined by equalizing the energy of the 
approximation and the detail coefficients:  
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In this paper we use eq. (6) for the determination of α, based 
on a set of two new vectors D1 and A1 (with lower dimension 
than the initial vectors D and A) which are created by using 
the following.  

The detail coefficients D are like waves and they frequently 
change their polarity. Therefore, the coefficients between the 
positive and negative peaks have magnitudes that are close to 
zero, and we discard their contribution by keeping the local 
extremes in D and zeroing the other coefficients:  
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Similarly, the vector A1 is constructed by zeroing the 
approximation coefficients A for those indices i where 
D1(i) = 0: 

 A1 = A·sign(|D|) 

 Since the coefficients D1 and αA1 have equal energy and at 
the same time, the coefficients D1 contain narrower and higher 
peaks compared to the coefficients αA1, the coefficients αA1 

will be smaller than the coefficients |D1| where the signal 
portion in (5) is bigger, but bigger than coefficients |Dn1| 
where there is no signal. 

In general, since the noise is proportional to the local signal 
intensity, for the threshold τ the following can be written: 
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where L is the length of the vectors A and τ. The coefficients 
α0, α1, … can be obtained by minimizing the square measure 
E1 in the smallest squares sense: 
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For the purpose of simplicity, the threshold τ can take the 
form (6), and in the same time the error function E1 which is 
to be minimized is: 
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IV. EXPERIMENTAL RESULTS 

In this Section, we illustrated our proposal on a 
deterministic 1-D signal contaminated with artificially 
generated noise in Fig. 1. The non-decimated wavelet 
transform [3] is performed using a NPR-QMF prototype filter 
[5], instead of wavelet filters. We obtained that the 
approximation coefficients follow the signal contour as it is 
illustrated in Fig. 1c.  

Since the noise is signal dependent, the detail coefficients D 
(Fig. 2) follow the signal level: the signal intensity in the 
interval 120-160 is higher than the signal intensity in the 
intervals 160-180 and 180-220, so the noise is highest in the 
interval 120-160, while lowest in the interval 180-220.  

By comparing Fig. 2а and Fig. 2b it can be seen that the 
coefficients D contain signal details Ds with higher intensities 
around the positions 160 and 180 (jumps in Fig. 2а, i.e. peaks 
in Fig. 2b); while in the other regions, in the interval 120-220, 
there is noise. Also, in Fig 2b it can be noticed that a 
significant portion of the detail coefficients have values close 
to zero as a consequence of the fast changing of their polarity. 

We experimented with non-uniform thresholds calculated 
in two ways:  

1) with eq. (6) by using energy equalizing of the new 
vectors A1 and D1 in (8);  

2) with eq. (9) for different polynomial order n and 
minimizing of (10).  

The thresholds follow the height of the detail peaks as it is 
illustrated in Fig. 3: the noise level is higher; the thresholds 
are higher and vice versa. If we make a comparison of two 
thresholds obtained with 1) and 2), the first threshold is 
extended and closer to the peaks of the coefficients |D|, which 
means it is better generated than the second one. This is 
illustrated in Fig. 3. When a threshold is calculated by using 
(9), the number of terms (n), have not significant impact on 
the threshold.  
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Fig. 1. (а) Deterministic signal; (b) noisy signal; (c) first level 
approximation coefficients; (d) reconstructed signal using the 

proposed approach; (e) reconstructed signal using the universal 
global threshold with db7; (f) reconstructed signal using multiscale 

product. 
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Moreover, the experiment illustrates that although the 
procedure of energy equalizing is simpler than the procedure 
of minimizing, it yields with better estimated threshold. 

Values of these coefficients αi in (9) obtained with 
minimization of (10) in the smallest squares sense and the 
error (10) for different polynomial order are given in Table I.   

Using non-uniform threshold preserve the signal 
coefficients while remove the noise ones. This is shown in 
Fig. 4 where noise-free detail coefficients and filtrated detail 
coefficients are given. The coefficients are filtrated with 
threshold τ = αA where α is estimated through the 
coefficients A1 and D1 in (8). If a global threshold was used, it 
was not be possible to reduce noise without removing part of 

the signal at the same time. Hence, the reconstructed signals 
when a global threshold or multiscale product are used, suffer 
from distortion at the signal jumps positions, while there is no 
distortion at the signal filtrated with the proposed approach. 
This distortion appears as a result of removing signal 
information contained in the detail coefficients when a global 
threshold is used. This can be seen from Fig. 1d, e and f.  

In order to quantitatively compare the proposed method to 
some known wavelet based methods, we use the energy of the 
remained noise in the filtrated signal s1 as a measure: 
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Fig. 3. Details and different estimated non-uniform thresholds: Threshold obtained through energy equalizing when τ = αA (8) and thresholds 
obtained through minimization minimization of (10) for different order of the polynomial (9) (for clearer view, the values from 0 to 3.5 are 
shown only). 
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Fig. 2. A part of the first level wavelet coefficients. (а) Approximation coefficients A; (b) detail coefficients D. 
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Table 2 contains the results when the signal is 
reconstructed from the first level approximation and filtrated 
detail coefficients. It can be seen that when the proposed 
approach is applied, the noise energy is smaller compared to 
the other methods that use a global threshold. 

 

V. CONCLUSION 

In this paper we give some views and experimental results 
conducted with our proposed method for denoising signals 
that contain signal-dependent noise. The experiments give 
advantage to the proposed method over the known wavelet 
based methods. 
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Fig. 4. (а) First level detail coefficients of the noise-free signal; (b) 
Filtrated coefficients using the threshold τ = αA when α is estimated 

through coefficients A1 and D1 in (8).  

TABLE I 
COEFFICIENTS αi IN (9) OBTAINED BY 

MINIMIZATION OF (10) AND THE ERROR (10) 

Polynomial 
order n Coefficients αn, αn−1, …, α1, α0 

Error Е 
in (10) 

1 (α0≠0) 0.3714    0.0385 576.2 
1 (α0=0) 0.0502 585.0 

2 0.0484    0.0818   −0.0010 571.1 
3 0.2294    0.0422    0.0010   −0.0000 570.9 

4 0.2036    0.0315    0.0027   −0.0001    
0.0000 571.2 

5 0.0643    0.0387    0.0113   −0.0010    
0.0000   −0.0000 566.5 

6 0.1281    0.0077    0.0043    0.0010   
−0.0001    0.0000   −0.0000 560.0 

7 0.0035    0.0009    0.0003    0.0001    0.0000   
−0.0000    0.0000   −0.0000 600.9 

8 
1.0e-003 * 
0.1347    0.0408    0.0141    0.0047    0.0013   
0.0002   −0.0000   −0.0000    0.0000 

627.1 

9 

1.0e-004 * 
0.6515    0.2191    0.0848    0.0329    0.0117   
0.0033    0.0005   −0.0001    0.0000   
−0.0000 

607.8 

10 

1.0e-005 * 
0.5918    0.2146    0.0901    0.0387    0.0159   
0.0058    0.0017    0.0003   −0.0000    
0.0000   −0.0000 

634.2 

 

TABLE II 
THE ENERGY OF THE REMAINED NOISE IN THE 

FILTRATED SIGNAL WITH THE PROPOSED METHOD 
AND KNOWN METHODS 

Known methods Proposed
wavelet universal [1]  [4] sq.root [1] [2] 
sym4 2011 2032 2071 1566 
sym7 2041 2094 2149 1714 
coif3 1958 1964 2076 1753 
coif5 1923 1959 2059 1847 
db2 2017 2040 2091 1614 

1586 

db8 1789 1795 1838 1787 
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