

Realization of Train Rescheduling Software System
Snežana Mladenović1 and Slavko Vesković2

Abstract - During the past decades numerous methods have been
developed, resolving more or less successfully the NP-hard
(re)scheduling problems. If, however, there is an ambition to
bring into practice one of the scheduling methods, the research
must focus on both the development of algorithms and of
corresponding software systems. The paper presents the most
interesting realization details of the first prototype of train
rescheduling system.

Keywords - Train rescheduling, Software system, OPL, CP

I. INTRODUCTION
The train scheduling problem belongs to a category of NP-

hard problems of combinatorial optimization, and hence is
complex for both modeling and solving. On the other hand,
that problem must be solved as a part of tactical planning
process in real railway systems.

The assignment of train rescheduling is that on a smaller
fragment of railway network, over a shorter planning period
an operational reconstruction of timetable is made, in respond
to disturbances that have arisen.

The rescheduling in general may be considered to be a
more difficult problem than an initial scheduling because
additional requirements are imposed to it [1, 2]: to find a
solution in a given real time; to have a recovered schedule
which will deviate from the initial one as little as possible; the
solution if not optimal, to be at least "good enough" with
respect to the assigned objective function, etc.

Authors have been agreed that train rescheduling is quite a
difficult work. According Norio et al. [3], major reasons of
this are as follows:
• it is difficult to decide an objective criterion of

rescheduling which is uniformly applicable;
• train rescheduling is a large size combinatorial problem;
• a high immediacy is required;
• no necessary information can be always obtained.

Since train rescheduling is such difficult job, assistance of
software systems have been longed for, and nowadays train
rescheduling systems are being practically used.

However, only a few published papers deal with train
rescheduling software in real time. In fact, the current
rescheduling systems test mostly if the solution proposed by
the user is feasible one, and they are not doing full schedule
regeneration. It also can be noted that authors simplify the
scheduling problem in two ways: by simplification of the
network structure and omitting and/or approximating
constraints that govern the train movement. Thus, the model
used by Isaai and Singh in [4] does not allow sequencing on
single-track line between two consecutive stations. The first

Authors are with Faculty of Transport and Traffic Engineering
University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia ,
E-mail’s: snezanam@sf.sf.bg.ac.yu; E-mail: veskos@sf.sf.bg.ac.yu

train must complete its arrival at the next station before the
next train departs from the previous station. This rule relaxes
problem but leads to a poorer solution, as slower trains can
hold up other faster trains while traversing from one station to
another.

The design, development and implementation of train
rescheduling system are a specific assignment of the software
engineering. The paper presents recommendations to be
followed as general during design, development and
implementation of the rescheduling system. In accordance
with these recommendations, the first prototype of train
rescheduling system has been realized.

The rest of the paper is organized as follows: Section 2
points to some particularities in the rescheduling software life
cycle. Section 3 records the expected design requirements.
Section 4 deals with the implementation issues. A special
attention must be paid to testing in the incremental software
development, and this is discussed in Section 5. An analysis
of the first prototype results is a prerequisite for specification
of new requirements and development of a new, more perfect
prototype, which is discussed in Section 6. Finally, Section 7
presents conclusions.

II. RESCHEDULING SOFTWARE LIFE CYCLE
The spiral model, according to authors’ opinion, is the

model of the first choice for development of rescheduling
applications. The basic assumption is that the specification of
users’ requirements is not completely finalized before the
stages of design and implementation. The software system is
developed incrementally, by developing a series of prototypes,
that being verified and validated, considering the new user
requirements.

A particularity of the proposed spiral model is a risk
analysis that must be carried out before design of any new
prototype. The risk in developing a rescheduling software
system is not low; the prototype may simply "fail", if too tight
time limits have been imposed

Herein, only the details of the train rescheduling software
life cycle that differentiate from other software systems will
be highlighted.

III. DETERMINATION OF REQUIREMENTS
Essential requirements put to the train rescheduling

software are:
• interaction with other software systems,
• existence of graphic user interface,
• respect to time limits.

The rescheduling system must receive information from
hierarchically higher planning levels. Thus, an initial train
timetable and network topology must be accessible to the train
rescheduling software. The rescheduling system also must

535

Realization of Train Rescheduling Software System

receive the latest information regarding the resources
availability, job progress, etc. from the process monitoring
system. A general idea is for all data available to be found in
the information system DataBase DB, wherefrom they will be
accessible to the rescheduling software. Usually, a significant
effort is required to adapt the real system database for the
rescheduling system input. The requirement to make the
database correct, consistent and complete often assumes a
designing of a series of tests the data must be run through
before being used. Since a real database from the railway
company was not accessible during the research, a demo MS
Access database was created, assuming that it is correct,
consistent and complete.

Within the database, it is possible to distinguish the static
and dynamic data. The static data are all data on jobs and
resources that do not depend on scheduling. E.g., data on train
categories belong to static data. Data on resources are
relatively static data, as well as on the regular timetable. The
job priorities are also static data, not depending on scheduling,
either. The priority may be based on the planner’s assessment
or may be result from the procedure taking into account other
data from the information system database. The job priority
change may depend on the scheduling period, but also by
some external, hardly predictable events; thus suburban and
urban trains may temporarily, during the peak hour period, get
a higher priority than international trains. In our model, the
change of priority procedure takes into consideration the
expert assessments in the database made for individual
sections and individual periods during the day.

The dynamic base consists of all schedule-dependant data:
job start and completion times, current job positions, number
of delayed jobs etc. Some data may be considered as both
static and dynamic, e.g. resource setup time. Occurrence of
unexpected dynamic data in the DB is actually a trigger for
the train rescheduling procedure.

The scheduling Model Base MB holds an important place
in our rescheduling system also. It collects the models that
optimize one or the other objective function, imposing or
relaxing certain constraints. A special procedure selects a
model from the MB, taking into account the user’s wish the
function wants to optimize.

The architecture of a hypothetical information system with
incorporating a train rescheduling system – schedule recovery
module, is presented in figure 1 in the form of data flow
diagram between the processes. The schedule recovery
module should enable the model management: choice,
combining, sequencing, running etc.

The user interfaces can determine the scheduling system
usability. Obviously, the scheduling visualization must
resemble the one the users are accustomed to during their
work for many years. Also, since the inference engines and
decision-making are hidden from planners–users, the
presentation of scheduling results must be such to make him
assured quickly and easily on the validity of the "good-
enough" solution found.

The scheduling software must have an interface based on
"WIMP paradigm" (Window, Interaction, Mouse, Pointer).

The user interfaces for database modules are in a
standardized form and are determined by a used database
management package.

The realized schedule recovery module contains 7 models
corresponding to different objective functions (maximum
tardiness, maximum weighted tardiness, total tardiness, total
weighted tardiness, makespan, maximum slack of trains in
stations, number of late trains). If we wish to offer the
planner–user a possibility of a direct model choice, we must
furnish him with a user interface that will enable such
manipulation. No other modes of interactive manipulations
are necessary because the very objective of the rescheduling
system is a full automation that eliminates the user’s slow
actions.

The literature describes numerous standard user interfaces
for presentation of scheduling information [5]. It is interesting
that none of the standard graphic interfaces was fully suitable
for schedule visualization in the train rescheduling problem
for objective and subjective reasons. Objectively, none of the
interfaces presents transparently enough the sequencing,
overtaking, crossing, waiting and movement of trains. On the
other hand, the planners–users are used to visualization known
as the train diagram, which is, actually a slightly modified
Gantt chart. The modification consists of "touching" the
resources on y-axis (in fact, the real infrastructure objects
touch each other) and the replacement of bars by their
diagonals, which symbolizes the train movement on a
resource. Figure 2 represents the realized graphic presentation
of a found schedule of the train rescheduling system.

The modified Gantt chart is made automatically by MS
Excel. In the graphic presentation, "background" is always a
tabular presentation of train diagram, presenting the start and
end times of each job activity, along with the information on
which resource it will be accomplished.

IV. IMPLEMENTATION
The implementation of the scheduling system is accompanied,

from the very beginning by perplexities. Namely, dozens of
software companies claim they have developed automatic
scheduling generators, that can be applied in different real
systems, these being either a choice of a commercially available
scheduling generator, development of a "from zero" system, or a
combined approach?

In attempts to implement the train rescheduling system solely
by scheduling generators available, a series of problems arose: an
immensely oversized scheduling problem, difficulties in
establishing a link between the scheduling system and the
schedule implementation monitoring system, difficulties in
coding special cases (e.g. station tracks under specific conditions
behave as a single resource, and as separate resources otherwise),
timing requirements, ... On the other hand, there was a idea to
speed up the stage of implementation by using the scheduling
generators available.

The Integrated Development Environment (IDE) OPL Studio
[7] enables us to create and modify the Constraint Programing
(CP) and scheduling models using the Optimization
Programming Language (OPL), to compose and control models
using the procedural language OPL Script, to run models by
ILOG Solver and ILOG Scheduler as well as to presentation of
results (schedules) in a tabular and graphic form. The OPL Studio
trial version is available on site

536

Snežana Mladenović and Slavko Vesković

http://www.ilog.com/products/oplstudio/trial.cfm and it was used
for implementation of the first prototype of train rescheduling
system.

Fig. 1. Position of schedule recovery module in a real information system

In order to improve the time performance the software
tools available was added to modules implementing heuristics
specific for the train rescheduling problem. By separation
heuristics, a global problem was split up into a series of
smaller size subproblems the ILOG Scheduler is able to solve
up to optimality. The bound heuristics have initially limited
the decision variable domains and objective functions, and the
search heuristics have directed the search into the space
promising good solutions. These heuristics were described in
details in [6]. A declarative nature of OPL was used for a
simple formulation of the scheduling model. The schedule
recovery module itself represents in fact a procedure
formulated in the OPL Script with controlling the
optimization models in a suitable way constructs "good
enough" schedule in the limited time.

V. PROTOTYPE TESTING
The software system testing is traditionally carried out

through verification and validation. The prototype verification
and validation must be carried out according to the standard
criteria for software, these being efficiency: reliability,
usability, modifiability, portability, testability, reusability,
maintainability, interoperability, and correctness. The first
train rescheduling system prototype was assessed for all
quality criteria. The specificity of the train rescheduling
application imposes to clarify in this point, in particular:
• efficiency – the software must work within the envisaged

time limit. This is a key property of the rescheduling
system. The testing of systems that have to operate within
the given time limit is extremely difficult. The idea is to

reiterate each test example for numerous times, and a
good direction for support to this idea is the automatic
testing. The testing of the first train rescheduling system
prototype was made manually, on a large number of input
timetables with existing disturbances; each test example,
however, was run at least 10 times to determine the mean
value of CPU time. It was found during the testing that
the variation of CPU time still is not drastic (not more
than 10± % of the mean value);

• reusability – the property of the software that, as a whole
or in parts, it may be used for development of similar
systems, thus increasing the development productivity of
related systems. E.g., it is known that the train
rescheduling is a core of the systems which deal in
railway traffic with: timetable preparation, determining of
economically acceptable utilization of capacity interval,
estimate of costs of stopping and tardiness of trains for
operational reasons, forecasting the effects of
investments, identification of bottlenecks in
infrastructure, choice of possible solution of a conflict
point, testing the arrangement and layout of block
sections and signals along the railway line etc.
Standardization of software modules and their
communication is a good direction for upgrading their
reuse;

• modifiability – expresses a property of easy
modifications on the software in case of changed user’s
requirements. E.g., it is reasonable to expect that the set
of constraints be to subject to changes. A declarative
nature of CP approach, separation between the constraint

537

Realization of Train Rescheduling Software System

component and search component, available CP tools,
offer the programmer fantastic possibilities to achieve the

highest level of modifiability.

Train diagram

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 1000 2000 3000 4000 5000 6000 7000 8000
time t[s]

re
so

ur
ce

s

train#1, cat: 5 train#2, cat: 4 train#3, cat: 1 train#4, cat: 4 train#5, cat: 1

train#6, cat: 5 train#7, cat: 3 train#8, cat: 1 train#9, cat: 4 train#10, cat: 4

kolov34
kolov12

kolpm12

kolbd12

kolkr12

Beograd
Dunav

Pancevacki
most

Krnjaca

Ovca

Sebes

Fig. 2. Realized window of user interface of the first prototype of train rescheduling system – a graph presentation of the recovered train

schedule in the form of modified Gantt chart

VI. ANALYSIS OF THE PROTOTYPE RESULTS
The testing of the first train rescheduling system prototype

was carried out on a large number of input timetables with
existing conflicts Experiments have been carried out on a
fragment of real railway network (a part of Belgrade Railway
Junction), with actual train categories operating there, but
with traffic frequency immensely exceeding the real one.
The jobs (trains) are "piled up" on purpose to test the
endurance of the method. All seven relevant objective
functions participated in the experiment. Each set of jobs
suffering disturbances includes trains of different categories
and different movement directions. All experiments have been
implemented on personal computer Intel (R) Pentium(R) 4
CPU, 2GHz. For example, CPU time needed for generation of
schedule, given on figure 2, was 36.65 seconds where
objective function was maximum tardiness.
From the analysis of experiment results the following
conclusion may be drawn:
• CPU time of schedule recovery depends on the number of

activities and number of conflicts;
• solving of initial conflicts may bring up additional

conflicts;
• in most cases the time performance is satisfactory;
• a heuristic nature of the approach has been demonstrated (in

an insignificant number of cases the best-known solution
for the given objective function has not been found).

Based on this analysis, we can formulate the proposals the
acceptance of which should lead to the improved prototype.

VII. CONCLUSION
A major part of theoretical research carried out during the

past decades in the field of scheduling has a limited
application in real systems. Therefore, the research must be
concentrated on the development of algorithms, but also
on development of software systems. This paper is one of
such attempts.

The rescheduling software system should enable the
planner to produce faster a better quality schedule. There are
also other reasons for introducing automatic scheduling
systems. The scheduling system requires advanced
"disciplines" from other subsystems of the real information
system. It oblige and ensure the real process to develop
according to schedule.

Experiments made on the first train rescheduling system
prototype, on a real railway network fragment, with real
traffic structure, and possible disturbances, make us believe
that the approach proposed in this paper may offer a full
support to the railway operational management.

REFERENCES
[1] Cowling, P. and M. Johansson, “Using real time information for

effective dynamic scheduling”, European Journal of Operational
Research, 139(2), pp. 230-244, 2002.

[2] Vieira, E. G, J. W. Herrmann and E. Lin, “Rescheduling
manufacturing systems: a framework of strategies, policies and
methods”, Journal of Scheduling, 6, pp. 39-62, 2003.

[3] Norio T., Y. Tashiro, T. Noriyuki, H. Chikara and M. Kunimitsu,
“Train rescheduling algorithm which minimizes passengers’
dissatisfaction”, in Innovations in Applied Artificial Intelligence,
Lecture Notes in Artificial Intelligence 3533, Springer Verlag,
pp. 829-838, 2005.

[4] Isaai, M. T. and M. G. Singh, “An object-oriented, constraint-
based heuristic for a class of passenger-train scheduling
problems”, IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews, 30(1), pp. 12-21, 2000.

[5] Pinedo, M., Scheduling: Theory, Algorithms and Systems,
Prentice Hall, 1995.

[6] Mladenović, S., M. Čangalović, D. Bečejski–Vujaklija and M.
Marković, “Constraint programming approach to train
scheduling on railway network supported by heuristics”, 10th
World Conference on Transport Research, CD of Selected and
Revised Papers, Paper number 807, Abstract book I, pp. 642-643,
Istanbul, Turkey, 2004.

[7] ILOG OPL Studio http://www.ilog.com

538

