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Abstract – In this paper a method for cascade synchronization 
of three or more chaotic systems is proposed. The method is 
based on the so called Linear-Nonlinear decomposition of the 
systems. The advantage of this approach is in the possibility for 
exact analysis of the stability of the synchronization manifold, 
because the error systems are always linear. The results of the 
application of the method on a well known continuous chaotic 
system (the Chua system) are proposed. 
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I. INTRODUCTION 
One of the most specific and at the same time one of the 

most interesting fields of the nonlinear dynamics is the chaos 
theory. During the last 17 years (after 1990) a great effort is 
made in two main trends in the chaos theory - the 
synchronization of chaotic systems and the control of these 
systems [1]. The primary practical benefit of the chaotic 
synchronization is in the fact that this interesting phenomenon 
can be used in the secure communications to protect (hide) the 
transmitted information from unautorised access  [2]. 

The cascade synchronization can be considered as a sub-
field of the chaos synchronization, by which three or more 
chaotic systems have to be synchronized by such way that 
they will evolve identically but at the same time chaotically in 
the phase space. 

Different methods for synchronization of chaotic systems, 
respectively for cascade synchronization of such systems exist 
[3]. It is common that because of the fact that all chaotic 
systems are nonlinear systems, there is no universal 
synchronization method, which can always be applied and 
which guarantees the synchronization for a particular system. 
Therefore the work of searching for new approaches or new 
modifications of the existing ones, which overcome some of 
their drawbacks or limitations, continues in the last years. 

In this paper the author proposes a modification of the 
linear-nonlinear decomposition (LND) method for 
synchronization of chaotic systems, by which in the Slave 
systems auxiliary driving signal, proportional to the difference 
function, is lead in. Thus the main limitation of the LND 
method (only one variant for coupling of the systems, which 
for most known chaotic systems doesn't guarantee stable 
synchronization) is overcome by the great variety of auxiliary 
couplings, which enhance the chance for achieving stable 

synchronization. At the same time the proposed approach, 
called modified linear-nonlinear decomposition method 
(MLND), retains the main advantage of the LND method, 
being the possibility of exact analysis of the stability of the 
synchronization manifold. This is conditioned by the fact that 
the difference system (systems), in contrast to all other 
synchronization methods, is always linear. 

The proposed method is previously tested on simple 
synchronization of two chaotic systems. In this paper the 
MLND method is applied for achieving serial cascade 
synchronization of three or more chaotic systems. The results 
for the Chua chaotic system are proposed. 

II. MODIFIED LINEAR-NONLINEAR 
DECOMPOSITION METHOD FOR CASCADE CHAOTIC 

SYNCHRONIZATION 

A. Cascade synchronization of chaotic systems 

The chaotic synchronization is a phenomenon, by which 
two identical (most frequently) chaotic systems tune up their 
dynamics to each other and evolve identically in the phase 
space. This phenomenon can be used in the communications 
to secure the transmitted information [2]. For more complex 
communication systems the receiver and transmitter can be 
arrays of cascade coupled three or more chaotic systems, or 
there can exist one or more mediator chaotic systems between 
the transmitter and receiver. This fact conditions the 
development of the sub-field of cascade chaotic 
synchronization. 

By the most-frequent type of cascade synchronization three 
or more identical chaotic systems are coupled sequentially and 
the proper coupling is searched to achieve stable 
synchronization between the systems. The first system is 
called Master system, the second one - Slave1, but it is also a 
Master system for the next system of the chain, the third 
system -  Slave2 and so on. The systems for the most common 
case of three chaotic systems can be defined as follows: 

                              Master     ( )t,xfx =& ,                               (1) 

                               Slave1     ( )t,,~~~ xxfx =& ,                          (2) 

                               Slave2     ( )t,~,
~~~~~~ xxfx =

& ,                          (3) 

where 1nℜ∈x , 2~ nℜ∈x , 3
~~ nℜ∈x  and the initial conditions 

are ( ) ≠0tx ( ) ≠0
~ tx ( )0

~~ tx . For 321 nnn ==  and 
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( ) ( ) ( )xfxfxf
~~~~~~

==  the systems (1)-(3) are identical, which is 
the most common case. The system (2) is in fact a mediocre 
system for the synchronization of the systems (1) and (3). 

For identical systems, which are considered in this paper, it 
is called that the three systems are synchronized, if: 

                   ( ) ∧=
∞→

0lim tat
e   ( ) 0lim =

∞→
tbt

e ,                       (4)  

where 

                     ( ) ( )( ) ( )( )0000
~,,~,, ttttttta xxxxe −= ,                  (5) 

                     ( ) ( )( ) ( )( )0000
~~,,

~~~,,~ tttttttb xxxxe −=                  (6) 

are the difference functions between the solutions of the first 
and the second (5), and between the second and the third (6) 
systems. 

The eventual synchronization can also be illustrated directly 
by observing the difference function between the first and the 
third systems: 

                 ( ) ( )( ) ( )( )0000
~~,,

~~,, tttttttc xxxxe −= .                 (7) 

The systems (1) - (3) will be synchronized, if: 

                                      ( ) 0lim =
∞→

tct
e ,                               (8) 

but in general it is possible the systems (1)-(2) to achieve 
marginal synchronization, and the systems (2)-(3) - reciprocal 
to the first marginal synchronization and thus the condition (8) 
can be fulfilled without the fulfillment of  Eq. (4). 

B. Modified linear-nonlinear decomposition (MLND) method 
for cascade chaotic synchronization 

One little known decomposition method for 
synchronization of two identical chaotic systems is the linear-
nonlinear decomposition method [4]. The essence of the 
method is the formal decomposition of the Master system in 
linear and nonlinear parts: 

         Master   )),(()(),()( ttttt xhАxxfx +==& ,              (9) 

where )(tAx is the linear part, and )),(( ttxh - the nonlinear 
part of  ),( txf .  

Then the Slave system is constructed in such way, that it is 
driven with the nonlinear part of  Eq.(9): 

             Slave )),(()(~),,~(~)(~ ttttt xhxAxxfx +==& .           (10) 

Subtracting Eq. (10) from Eq. (9) one gets the error 
(difference) system: 

            )())(~)(()(~)()( tttttt АexxAxxe =−=−= &&& .         (11) 

The eventual synchronization between systems (9) and (10) 
will be stable, if  ( ) 0lim =

∞→
t

t
e , i.e. the point e=0 of the error 

system (11) is stable. Since Eq. (11) is a linear system, this 

analysis is easy to made (the stability is proved from the sign 
of the eigenvalues of A), which is the main advantage of the 
LND method. 

However this method has one major limitation - it offers 
only one variant of coupling of the systems (9) and (10). 
There is no guarantee, that this variant will give stable 
synchronization. The more variants of coupling available for 
any synchronization method, the greater the chance for 
obtaining stable synchronization. The author suggests the 
addition of a second coupling, proportional to the error 
function: 

       Master )),(()()( tttt xhАxx +=& ,          (12) 

       Slave    ))(~)(()),(()(~)(~ tttttt xxExhxAx −α++=& ,     (13) 

where α  and Е are the coupling gain and the coupling matrix 
which defines the exact form of the coupling. Without loss of 
generality one can choose the so called standard one-way 
coupling, by which the connecting nonzero element is in the 
main diagonal of E. The error system: 

     )()())(~)(())(~)(()(~)()( tttttttt eEАxxЕxxAxxe α−=−α−−=−= &&&   (14) 

is again linear and thus retaining the advantage of the LND 
method one can now choose between great number of 
coupling variants. 

This concept can be applied for the cascade chaos 
synchronization. In this paper, without loss of generality, 
cascade synchronization of three identical chaotic systems is 
considered. Then the Master, the Slave1 and the Slave2 
systems, when the modified linear-nonlinear decomposition 
coupling is applied, are: 

   Master   )),(()()( tttt xhАxx +=& ,          (15)        

   Slave1   ))(~)(()),(()(~)(~
11 tttttt xxExhxAx −++= α& ,   (16) 

   Slave2   ))(
~~)(~()),(()(

~~)(
~~

22 tttttt xxExhxAx −α++=
& ,  (17) 

where in general 21 α≠α  and/or 21 EE ≠ . 
The two error systems are: 

                      )()()(~)()( 11 tttt aa eEАxxe α−=−= &&& ,                   (18) 

                      )()()(
~~)(~)( 22 tttt bb eEАxxe α−=−=
&&& .                  (19) 

Both systems (18) and (19) are linear, so when designing 
the two couplings one can easily prove the stability of each of 
them. 

C. Application of the MLND method on particular chaotic 
systems 

Since most of the known chaotic systems are continuous, 
some 75% of them being of third order, here the results of 
applying the modified linear-nonlinear decomposition method 
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for cascade synchronization of one of the well known third-
order systems are presented.   

The model of the Chua's chaotic electronic circuit is 
described with the following equations: 

                    
[ ]

,
,

,)()1(

23

3212

1121

xx
xxxx

xfxbxx

β

σ

−=
+−=

−+−=

&

&

&

                    (20) 

where 87.14,10 == βσ , 68.0−=b . The only nonlinearity is 

( )11
2

)( 1111 −−+
−

+= xxbabxxf  with 27.1−=a .  

The typical chaotic attractor of the system is shown in 
Fig.1. The initial conditions are [ ]T01.01.00 =x . 

 
 
 
 
 
 
 
 
 

 
Fig.1. Chua's attractor 

 
If Eq. (20) is considered as a Master system, it can be 

decomposed in the form of  Eq. (9), where: 

           
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

β−
−
σ+σ−

=
00
111
0)1( b

А , )()),(( 1xftt =xh .       (21) 

Two of the eigenvalues of A are positive -                       
j2.32.0,7.4 3,21 ±=λ−=λ  and the synchronization manifold 

will be unstable, i.e. the basic LND method cannot be applied 
neither for plain nor for cascade synchronization. 

One of the variants of the MLND method (15)-(17) will be 
shown. Let the Master system is described with Eq. (12) and 
the two Slave systems are constructed as follows: 

    Slave1 

[ ]

.~~
,)~(~~~~

,)(~)1(~~

23

2213212

1121

xx

xxxxxx

xfxbxx nl

β−=

−α++−=

−+−α=

&

&

&

         (22) 

    Slave2 

[ ]

.
~~~~

,
~~~~~~~~

,)
~~~()(

~~)1(
~~~~

23

3212

1121121

xx

xxxx

xxxfxbxx nl

β−=

+−=

−α+−+−α=

&

&

&

     (23) 

 
The additional coupling between Master and Slave1 

systems is obtained by applying the second variant of the 
standard one-way coupling (OW2) with 101 =α . The 

additional coupling between the Slave1 and Slave2 systems is 
OW1 with 102 =α . 

The matrixes of the linear error systems (18) and (19) for 
the chosen coupling schemes are: 

              )( 11EА α− =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

β−
α−−

σ+σ−

00
111
0)1(

1

b
,               (24) 

             )( 22EА α− =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−+−

00
111
0)1( 2

β

σασ b
,             (25) 

with the corresponding eigenvalues: 

                            jeig 3.16.1,9.10)( 11 ±−−=− EА α ,                 (26) 
                            jeig 8.31.0,9.13)( 22 ±−−=− EА α .                (27) 

Since all real parts of the eigenvalues (26) and (27) are 
negative, the necessary conditions for the synchronization 
stability between each pair of systems are fulfilled. The 
simulation with Matlab/Simulink confirms the 
synchronization.  The errors iiia xxe ~−=  and iiib xxe

~~~ −=  
are shown on Fig.2.  

After a period of approximately 30 seconds the three 
systems, started with different initial conditions each, are 
completely synchronized. At the same time the chaotic nature 
of the systems’ evolution is retained. 

One can confirm the cascade synchronization also by 
observing the error functions between the Master and the 
Slave2 systems - iiic xxe

~~−= , or by viewing the evolution in 
the state space ( )ccc eee 321 ,, . The latter is shown on Fig.3. 
After the transient period the error system between the first 
and the third system is stabilized into the origin ( )0,0,0 , i.e. 
there is identical synchronization between the first and the 
third system. Generally it is arguable if this automatically 
means there is also identical synchronization between the first 
and the second, and between the second and the third chaotic 
systems. In some cases it is possible the first pair of systems 
to exhibit marginal synchronization, where the error after 
achieving synchronization is a nonzero constant, which 
depends on the initial conditions. Very unlikely, but not 
impossible in general, the second pair of chaotic systems can 
also exhibit marginal synchronization, where the error 
stabilizes in the same constant with different sign. Then the 
Master and the Slave2 systems will exhibit identical 
synchronization without the presence of identical 
synchronization between Master and Slave1, and between the 
Slave1 and Slave2 systems. 

The influence of the coupling gain iα  is also investigated. 
By OW1 and OW2 couplings for the Chua system the 
increasing of  iα  leads to decreasing in the transient process, 
e.g. for 2021 == αα  the cascade synchronization is almost 
two times faster. However the conclusion about the influence 
of the coupling gain cannot be made in general. For other 
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chaotic systems or even for the OW3 coupling for the Chua 
system, the increasing of iα  leads to the loss of 
synchronization. It is also not recommendable to choose very 
large gain constant, because this will increase the influence of 
the eventual noise which is always present in the 
synchronization channel and therefore is included by the 
couplings in the Slave systems. 
 

 
               
 
              a. 
 
 
 
 
 
 
 
 
   
              b. 
 
 
 
 
 
 
 
 
             
              c. 
 
 
 

 
 
 
 

Fig.2. Error functions: a - ba ee 11 , ; b - ba ee 22 , ; c - ba ee 33 ,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. State space ( )ccc eee 321 ,,  
 
The results for the other possible variants of the MLND 

method for the Chua system are generalized in Table I. The 
columns show the additional coupling between the Master and 

the Slave 1 systems, the rows show the additional coupling 
between the Slave 1 and the Slave 2 systems. The coupling 
constants for all OW1 and OW2 couplings are 10=iα . The 
coupling constant for the OW3 couplings is 2=iα , because 
for greater value the error system becomes unstable. The 
length of the transient before complete identical 
synchronization between the three systems in simulation 
seconds is shown. One can see that as long as the basic LND 
method does not work for the Chua system, all nine possible 
couplings of the proposed MLND method guarantee stable 
synchronization. This conclusion however cannot be 
generalized for all chaotic systems, since each such system as 
a nonlinear system have its own properties and until now no 
universal method for chaotic synchronization is proposed.  

TABLE I 
RESULTS FOR DIFFERENT COUPLINGS   

M-S1
 

S1-S2 
OW1 OW2 OW3 

OW1 45s 30s 28s 
OW2 32s 5s 9s 
OW3 30s 7s 10s 

The MLND method is also tested on other chaotic systems. 
For example for the Rossler system the LND method again 
does not yield stable synchronization while the OW1 and 
OW2 additional couplings of the MLND method with 
properly chosen coupling gains stabilize the error systems and 
the three Rossler systems exhibit identical synchronization. 
However the OW3 additional coupling for the Rossler system 
cannot stabilize the error system for all possible coupling 
gains, so synchronization is not possible. 

III. CONCLUSION 

In this paper a new modification of the linear-nonlinear 
decomposition method was presented by which the standard 
method is combined with additional coupling, proportional to 
the error function. Thus retaining the main advantage of the 
LND method, being the possibility for exact stability analysis, 
one can choose between different types of couplings so the 
possibility of finding proper synchronization scheme 
increases. 
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