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Abstract – This paper considers design of digitally controlled 
high-performance velocity servo-system, featuring fast response 
without overshoot. The proposed control structure contains main 
PI controller and active disturbance estimator, to further 
improve disturbance rejection dynamics. Resulting response 
meets the high-performance requirements. The designed control 
system is experimentally verified in induction motor velocity 
control. 
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I. INTRODUCTION 

Advanced production technologies have imposed more 
rigorous demands on servo-systems performances. Velocity 
servo-systems in high-performance applications must comply 
with the requirements of fast response without overshoot, high 
steady state accuracy, good rejection of external disturbances 
and robustness to parameter perturbations. In general, a servo-
system must have at least one pure integrator within the 
closed loop. Since control plant in a velocity servo-system 
does not have an integrating property, PI controllers are 
conventionally used. Such servo-system has no steady-state 
error on step references and completely rejects constant loads. 

Beside standard simple regulation contour, two degrees-of-
freedom controllers found their applications in servo-systems 
[1], in order to improve robustness. Reference and disturbance 
responses can be separately designed using this control 
structure. Similar results were obtained using internal model 
principle and internal model control, combined into IMPACT 
structure [2]. Another approach in disturbance compensation 
is introduction of disturbance estimators [3], which may be 
interpreted as a special case of the above two structures. 

This paper deals with the design of a digitally controlled 
high-performance velocity servo-system. Both pole placement 
and zero-pole cancellation design methods of PI controller are 
considered. To further improve disturbance rejection 
dynamics an active disturbance estimator [4] is introduced. 
Fast response without overshoot and excellent disturbance 
rejection properties are ensured. The proposed servo-system is 
experimentally verified in induction motor velocity control. 

II. VELOCITY SERVO-SYSTEM STRUCTURE 

Most of  velocity servo-systems, regardless of the employed 
drive, may be described by the simplified generalized block-
scheme depicted in Fig. 1. The cascade structure consists of 
two distinct control loops. Inner current control loop, 
responsible for adequate torque generation, is enclosed by a 
main speed control loop. Bandwidth of the inner loop is 
usually much higher then bandwidth of the speed loop, thus 
the current control subsystem dynamics may be ignored in the 
main controller design. Nevertheless, dynamic delay of the 
inner control subsystem has certain impact on overall system 
dynamics, acting as an unmodeled dynamics within the speed 
control loop. The current loop is commonly realized with a 
bandwidth around kHz1 , implementing PI controller. Since 
exogenous disturbances, such as load torque )(tM o , enter 
directly into the speed control loop, PI speed controller is 
usually employed in order to eliminate steady-state error in 
the case of step-like disturbances. 

 
Fig. 1. Generalized velocity servo-system structure 

 
Encouraged by huge technological advance of micro-

controllers, digital implementation of control algorithms 
overcomes analog counterpart. Correct system analysis should 
be carried out in discrete-time domain. Block diagram of a 
digitally controlled velocity servo-system is given in Fig. 2. 

)(zGr  is a discrete-time transfer function of digital controller, 
)(0 sGh  is sample and hold transfer function, Tk  is a torque 

constant, J  and B  are moment of inertia and viscous friction 
coefficient, respectively. Hence, motor dynamics is described 
by first order function )1/()( mm sTksG += , where 

Bkk Tm /=  is motor gain and BJTm /=  is time constant. 

 
Fig. 2. Digitally controlled velocity servo-system 
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If load torque is a step function or is slowly varying 
between two consecutive sampling instants, which is true for 
small sampling periods, discrete-time model of the closed 
loop system is given as 
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where sT  denotes sample period and Tooe kMM /= . As 
mentioned earlier, PI digital controller is employed within 
speed control loop. Controller transfer function is defined with 
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where pk , ik  are gains of proportional and integral action. 

III. CONTROLLER DESIGN 

According to the high-performance requirements, recounted 
in the introduction, controller (2) parameters should be tuned 
to provide fast critically aperiodic response. Due to (1) (2), 
characteristic equation 0)()(1 =+ zGzGr  is of second order, 
whose roots 1z , 2z  (poles of the closed loop system (1)) 
determine system response. As it is well known, second order 
system dynamics as well as nature of its response is defined 
by doublet ς , nω , which represents relative damping factor 
and undamped natural frequency, respectively. Closed loop 
poles are given by 2

2,1 1 ζωζω −±−= nns . In the case of 
critically aperiodic response, 1=ζ  yielding double real pole 

nss ω−== 21 . In discrete-time domain these poles are 

mapped into locations snTezz ω−== 21 , 10 1 ≤< z . To obtain 
desired closed loop dynamics defined by 1z  using pole 
placement design technique [5], pk  and ik  of (2) should be 
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which results in a closed loop dynamics of the form 
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showing that the desired poles are ensured. Consequently, a 
zero )21/()( 1

2
10 zazaz −+−=  arises in the response with 

respect to reference. Its location depends on the location of the 
desired pole 1z , which is plotted in Fig. 3. For zero 0z  not to 
be dominant, condition 10 zz <  must hold. According to Fig. 

3, valid selection of desired pole 1z  is aza << 1  which 
gives mnm TT 2/1 << ω . This indicates that the time constant 

of the closed loop system should be larger then motor time 
constant. This is unacceptable since notion of feedback 
control is to improve not to degrade system dynamics, so the 
desired pole must be located inside region az << 10 . This 
introduces dominant zero, which produces unwanted 
overshoot. Notice that system response with respect to load 
torque is free of undesirable zero. 

 
Fig. 3. Location of zero with respect to location of chosen pole 

 
One approach in overshoot elimination is introduction of 

referent signal filtering, which would slow down the system. 
This is contradictory to the high-performance requirements. 

Another design approach is zero-pole cancellation method, 
[5]. Namely, controller gains should be set in such manner 
that controller zero b  cancels plant pole a , ( ab = ), and gain 

pk  determines location of the desired closed loop pole 3z . 
Hence, controller parameters are obtained in the form 
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Closed loop system behavior is then described by 
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The system has first order dynamics defined by desired pole 
3z  with respect to reference, providing fast response without 

overshoot. However, complete cancellation does not occur in 
disturbance related term, which is described by second order 
dynamics. Furthermore, behavior with respect to disturbance 
is determined by “slow” pole of the plant az = , which is now 
dominant. Reference response is quite satisfactory, whereas 
disturbance rejection dynamics is unacceptable. In order to 
obtain high-performance servo-system it is necessary to 
improve disturbance rejection performance. 

IV. ACTIVE DISTURBANCE ESTIMATOR 

A way to improve system robustness to parameter 
perturbation and exogenous disturbances is introduction of 
disturbance estimator. The concept of disturbance estimator is 
that the external disturbances and model uncertainties, usually 
regarded as an equivalent disturbance, can be efficiently 
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compensated by feedback of the estimated value. 
Consider the control structure in Fig. 4, consisting of a real 

plant )(zG  and disturbance estimator in the local loop. 
Equivalent disturbance q  is evaluated inside the disturbance 
estimator employing discrete transfer function of the plant 
nominal model )(zGn . A local feedback for the disturbance 
compensation is closed via digital filter )(zGk . Due to the 
uncertainties of the plant parameters, the mismatch between 
real plant and nominal model inevitably exists. The real plant 
may be described as ))(1)(()( zGzGzG n δ+= , where the 
perturbation is limited by the multiplicative bound of 
uncertainty [ ]TeG Tj /,0),()( πωωγδ ω ∈≤ . Plant output is 
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Suppose that )()( 1 zGzG nk
−= , i.e., digital filter represents 

nominal plant inverse dynamics. Using (7) plant output 
becomes )()()( zUzGzY n= , which indicates that the 
disturbances are completely rejected and the nominal plant 
behavior is obtained. Unfortunately, such )(zGk  is not a 
causal filter, which cannot be realized. It is evident from (7) 
that the model perturbation )(zGδ  affects the stability of the 
system. Robustness of the proposed structure against model 
uncertainties is, therefore, limited to the level of the model 
perturbation ( )zGδ  quantified in a suitable way for which 
input-output transfer function (7) remains stable. 

 
Fig. 4. Structure of digital disturbance estimator 

 
In [4] an active disturbance estimator is proposed, where 

passive digital filter )(zGk  is replaced with an active control 
subsystem, Fig. 5. The signal q̂  is an estimate of the 
compensated part of the equivalent disturbance. If controller 

)(2 zGr  ensures qq =ˆ , )()()( 1 zQzGzU ne
−=  holds, which is 

equivalent to the passive structure with ideal digital filter 
)()( 1 zGzG nk

−= . Hence, nominal plant behavior is obtained, 
)()()( zUzGzY n= . From the control design aspect, problem 

of equivalent disturbance compensation is here transformed 
into tracking control problem with referent signal )(kq . 

Depending on the applied controller inside estimator certain 
error between q  and q̂  exists in general case, implying that 
complete equivalent disturbance rejection cannot occur and 
the obtained plant behavior is almost nominal. 

 
Fig. 5. Servo-system with active disturbance estimator 

V. SERVO-SYSTEM SYNTHESIS 

The proposed servo-system is depicted in Fig. 5. Both 
controllers, in the main loop )(1 zGr  and within estimator 

)(2 zGr , governs nominal plant and model, respectively, since 
disturbance estimator forces the real plant to exhibit nominal 
behavior. Hence, identical controllers designed for a nominal 
plant may be used in the main loop as well as in the estimator. 

For sake of expressions simplicity suppose that plant 
parameter identification is done correctly and parameter 
uncertainties are not significant, ( 0≈Gδ ). The proposed 
servo-system dynamics is then given by 
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Clearly from (8), system performance with respect to 
reference is directed only by the main controller and identical 
to the system without disturbance estimator (Fig. 2, eq. (1)). 
Since cancellation design method results in a satisfactory 
response to the reference, the main controller may be realized 
as PI type (eq. (2)) with the parameters tuned according to (5). 

However, both controllers participate in disturbance 
rejection. Since the main controller already has integral 
action, in case of step-like exogenous disturbances it is 
sufficient for estimator controller to be P type, 22 )( pr kzG = . 
Gain 2pk  is tuned using pole placement technique, where 4z  
is desired pole introduced by the estimator. Consequently, 
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With the controllers tuned according to (5) and (9), servo-
system dynamics become 
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It is obvious that the proposed structure with active 
disturbance estimator offers possibility to obtain both 
responses, with respect to the reference and exogenous 
disturbances, acceptable for high-performance servo-systems. 
Overshoot does not arise and system dynamics is completely 
defined by the freely adopted poles 3z , 4z . 

To completely reject ramp-like exogenous disturbances 
estimator controller must be of PI type with the parameters 
defined with eq. (3). System dynamics is then described by 
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VI. EXPERIMENTAL INVESTIGATION 

The effectiveness of the proposed control structure has been 
investigated by experiments, which have been conducted on a 
servo-system with a three phase, 50Hz, 0.37kW, Seiber LS71 
induction motor with 1.3 Nm nominal torque. Control part of 
the servo-system is realized by dSPACE DS1104 R&D 
controller board. Indirect rotor flux oriented vector control of 
induction motor is employed. The control scheme contains 
measurement of two line currents and rotor shaft angle 
position, coordinate transformations, decoupling circuits, 
electrical angle estimator, two local current control loops with 
200 Hz bandwidth and 10 kHz sampling frequency, and a 
main speed control loop with 1 kHz sampling frequency. 

By neglecting current control loops along with other 
unmodeled dynamics and nonlinearities, present in such 
complex system, in certain approximation speed control 
system may be considered as one in Fig. 2. In this 
representation motor parameters are: Nm/A6481.0=Tk , 

24 kgm105.3 −⋅=J , Nms/rad103 4−⋅=B . Reference signal 
is given with rad/s)5.0(100)( −⋅= thtr , and the system is 
subjected to load torque Nm)5.1(65.0)( −⋅= thtM o , which 
is 50% of nominal torque. 

In the first experiment (Fig. 6., trace (1)), active disturbance 
estimator is deactivated and the main PI controller is designed 
using pole placement. Desired dynamics is defined by 1=ζ , 

rad/s20=nω  ( 98.01 =z ). 0207.01 =pk , 4
1 10118.2 −⋅=ik  

are obtained using (3). An unwanted overshoot arises due to 
the dominant zero 99.00 =z . 

The main controller is then tuned by cancellation method in 
the second experiment (Fig. 6., trace (2)). Desired bandwidth 
of 10 Hz results in pole 939.03 =z , which according to (5) 

gives 033.01 =pk , 5
1 10819.2 −⋅=ik . System has good 

response to reference, but very slow dynamics of disturbance 
rejection, caused by not cancelled plant pole a . 

Finally, active disturbance estimator is activated in the third 
experiment (Fig. 6. trace (3)). The main PI controller remains 
unchanged from the previous experiment, while P controller 
in the estimator is set by applying pole placement under 
condition 34 zz = , resulting in 0324.02 =pk  by virtue of (9). 
The proposed servo system is superior to the other two, with 
fast velocity response without overshoot and equally fast 
dynamics in disturbance rejection. 

 
Fig. 6. Velocity servo-system step responses 

VII. CONCLUSION 

The paper considers design of high-performance velocity 
servo-system with active disturbance estimator, whose 
introduction drastically improves system behavior with 
respect to exogenous disturbances. This ensures fast response 
without overshoot and system dynamics is completely defined 
by freely adopted poles. Analytically predicted performance 
has been experimentally verified in case of induction motor 
servo–system, in which significant modeling error and 
parameter uncertainties exist. The proposed servo-system has 
exhibited excellent exogenous disturbance rejection property 
as well as robustness to parameter perturbations. 
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