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Abstract – In the present paper a literature review concerning the 
problem of optimal control synthesis using neural networks is 
presented. 
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І. INTRODUCTION 
 

During last ten years a large number of papers treating the 
application of neural networks for optimal control synthesis 
for plants, whose dynamics is described by linear and 
nonlinear ordinary and partial differential equations are 
published. It is determined by the main property of the neural 
networks to approximate any linear and non-linear function. 
The most widely used neural networks are feedforward neural 
networks. Another structure which is also applied is the 
recurrent neural network. A tendency to start using a broader 
range of structures emerges which is related to developing of 
new structures.  
 

ІІ. OPTIMAL CONTROL SYNTHESIS USING NEURAL 
NETORKS 

 

In  [6]  a survey of the possibilities of using neural 
networks for modeling, identification and control of the 
systems is presented. Here only the optimal decision control 
and model prediction control will be mentioned. In the case of 
model prediction control the plant is modeled through a neural 
network. By using the neural network model the future plant 
response are predicted over a specified time horizon. On the 
basis of predicted future response a specified performance 
index is minimized to obtain the optimal control. In optimal 
decision control case the state space is partitioned into 
separate regions, in which the control action is assumed 
constant. The control surface is realized through a training 
procedure of the neural networks.  
In [4] model predictive optimal controller for nonlinear 
discrete systems is considered. A block for system input state 
realization is used, which transforms the system into quadratic 
system with equal number of inputs and states in order to 
develop optima receding horizon controller which leads to 
decreasing the amount of the calculations in comparison to 
traditional optimal controllers. A nonlinear feedback law is 
derived where a neural network in feedback loop is used to 
generate of optimal input action.  
The generated input approximates the solution which is 
minimal in respect of quadratic cost function with  parameters  
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controlling the final states, the value and variation of the input 
action for the control purposes. An analysis of the local 
stability and robustness of the controller is presented.   
In [11] the problem of determining optimal controls for 
nonlinear dynamical systems by using neural networks is 
considered. Through a few examples the possibilities of the 
neural networks for on-line solution of the optimal control 
problems are demonstrated. 
In the major part of the publications [2, 3, 10, 12, 13, 14, 15, 
16, 17, 18, 21, 22] the optimal control problem is derived by 
using the dynamic programming method and the obtained 
solutions are approximated by using neural networks. 
Although the presented new approaches bear different names 
– adaptive critic methodology [2, 10, 12, 13, 14, 15, 16], 
neuro-dynamic programming [3], neural dynamic 
optimization [20, 21] – they do not differ from each other 
substantially.  Their main advantage is that so called “curse of 
dimensionality” problem is solved. 
The adaptive critic methodology is introduced in [2]. The 
control law for linear or nonlinear system is determined 
through consecutive adapting of two neural networks – action 
network and critic network. The action network captures the 
relationship between the state and control and the critic neural 
network captures the relationship between the state and co-
state. Through this methodology the control law is determined 
for a large set of initial conditions. It is not necessary the 
control law to be determined analytically. The neural network, 
which is used (multilayered perceptron) do not need external 
training; it is necessary the functional form of the control law 
to be known preliminarily. In [10] the necessary conditions 
for solutions obtained through the adaptive critic methodology 
to converge are presented and it is shown that the obtained 
solution is optimal. In [12, 15] the a.m. methodology is 
developed for distributed parameter systems. In [13] the 
method is applied for optimal control synthesis for distributed 
parameter systems, whose dynamics is described by coupled 
nonlinear partial differential equations. In [14] the proper 
orthogonal decomposition concept is used for reducing of 
distributed parameter system to lumped parameter system of 
law order. The optimal control problem is solved in time 
through applying the adaptive critic algorithm. Then the 
control solution is given in the spatial domain by using the 
same orthogonal functions. In [16] the adaptive critic 
algorithm is elaborated. It is shown that the necessity of action 
neural networks drops off.  
In [17] three adaptive critic methods, which are used for 
designing of neural controllers – heuristic dynamic 
programming, dual heuristic programming and globalized 
dual heuristic programming are described. Two modifications 
of the globalized dual heuristic programming as well as 
generalized training procedure are suggested. The developed 
approaches do not differ substantially from the methodology 
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suggested in [2]. In both approaches two neural networks are 
used for approximating the solution for the optimal control – 
action and critic neural networks. The only difference is that a 
recurrent neural network is used instead of multilayered 
perceptron. In [18] the approach is developed for discreet 
distributed parameter systems. Moreover the algorithm is 
elaborated and the necessity of action neural networks as in 
[16] drops off. 
In [20, 21] neural dynamic optimization is presented as a 
method for synthesis of optimal feedback control for 
nonlinear MIMO systems. The main characteristic of neural 
dynamic optimization is that the solution for the optimal 
feedback, whose existence is proved through dynamic 
programming method is approximated by using neural 
networks. In [20] the background and motivation for 
development of neural dynamic optimization is described and 
in [21] the neural dynamic optimization theory is presented. 
One major drawback of this approach is the big memory 
requirements although this requirement is not so severe 
compared to the classical dynamic programming method. 
Another methodology having for a theoretical basis the 
dynamic programming and using neural networks for 
approximation is so called neuro-dynamic programming 
According to the definition given in [3], neuro-dynamic 
programming “enables the to learn how to make good 
decisions by observing their own behavior, and use built-in 
mechanisms for improving their actions through a 
reinforcement mechanism”. This methodology is used not 
only for solving the optimal control problems but for a 
broader class of problems.  
In [9] a recurrent neural network is introduced for the N-stage 
optimal control problem. The first step of the presented 
approach is reformulating the N-stage optimal control 
problem and then the gradient method is used for deriving the 
dynamics equation of the recurrent neural network. Although 
the approach enables obtaining real-time solutions it possesses 
two drawbacks. First, the rigorous mathematical analysis for 
the stability of the neural network lacks.  Second, a neural 
network which combines the structure of the N-stage optimal 
control problem and a faster optimization method needs to be 
explored.  
In [22] an approach for synthesis of optimal control for 
nonlinear systems, which incorporates the N-stage optimal 
control problem as well as least square support vector 
machines approach for mapping the state space into action 
space. SVM with radial basis function kernel are used. The 
solution is characterized by a set of nonlinear equations. An 
alternative formulation as a constrained nonlinear 
optimization problem in less unknowns is given, together with 
a method for imposing local stability in the LS – SVM control 
scheme. Advantages of LS – SVM control are that no number 
of hidden units has to be determined for the controller and that 
no centers have to be specified for the Gaussian kernels when 
applying Mercer’s condition. The curse of dimensionality is 
avoided in comparison with defining a regular grid for the 
centers in classical radial basis function networks. This is at 
expense of taking the trajectory of state variables as additional 
unknowns in the optimization problem, while classical neural 
network approaches typically lead to parametric optimization 

problems. In the SVM methodology the number of unknowns 
equals the training data, while in the primal space the number 
of unknowns can be infinite dimensional. A drawback of this 
approach is the large number of the unknowns.  
In [5] the problem of multistage optimal control is considered. 
The problem is solved by using wavelet neural networks 
(WNN) as its capability for learning and generalization of 
functions are bigger. The control law is approximated by 
using WNN. The Langragian is constructed in order to from 
optimal control problem to come to optimization problem. A 
weight is introduced to regulate the balance between control 
system and its good performance by using WNN for mapping 
of the function from the state space into action space after 
which the optimal control is achieved. The value of the weight 
has effect on the simulation result.  
In [19] an interactive fuzzy satisfying method for the solution 
of a multiobjective optimal for a linear distributed parameter 
system governed by heat conduction equation is suggested. In 
order to reduce the control problem to an approximate 
multiobjective linear programming problem a numerical 
integration formula is used and the suitable auxiliary variables 
are introduced. By considering the vague nature of the human 
judgment, the decision maker is assumed to have fuzzy goals 
for the objective functions. Having elicited the corresponding 
linear membership functions through the interaction with the 
decision maker, if the decision maker specifies the reference 
membership values, the corresponding Pareto optimal solution 
can be obtained by solving the minimax problems. Then a 
linear programming based interactive fuzzy satisfying method 
for deriving a satisfying solution for the decision maker 
efficiently from a Pareto optimal solution set is presented.  
In [23] an approach for optimal control synthesis, in which a 
fuzzy neural network is used as a controller through 
simulation of the process of the controlled system is 
suggested.  
In [1] the designing of a neural networks based regulator for 
nonlinear plants is considered. Both state and output feedback 
regulators with deterministic and stochastic disturbances have 
been investigated. A multilayered feedforward neural network 
has been employed as the nonlinear controller. The training of 
neural network utilizes the concept of so called “block partial 
derivatives”. The suggested approach may also be used for 
optimal control synthesis for plant with state and control 
constraints. In [7] a neural network based algorithm for a 
discreet constrained optimal control synthesis for nonlinear 
systems is presented. 
In [25] a recurrent learning algorithm for optimal control 
synthesis for continuous dynamic systems is suggested. The 
designed controllers are in the form of unfolded recurrent 
neural networks. The proposed learning algorithm is 
characterized by its double–forward–recurrent–loops structure 
for solving both the temporal recurrent and the structure 
recurrent problems. The first problem is resulted from the 
nature of general optimal control problems, where the 
objective functions are often related (evaluated at) to some 
specific instead of all time steps or system states only. This 
causes missing learning signals at some time steps or system 
states. The second problem is due to the high-order 
discretization of the continuous systems by the Runge-Kutta 
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method that is performed to increase the control accuracy. The 
discretization transforms the system into several identical 
subnetworks interconnected together, like a recurrent neural 
network expanded in the time axis. Two recurrent learning 
algorithms with different convergence properties are derived: 
the first- and second-order learning algorithms. The stability 
and the robustness of the designed controllers have to be 
studied in details.  
In [24] a multilayered recurrent neural network is suggested 
for synthesizing linear quadratic optimal control systems by 
solving the algebraic matrix Riccati equation in real time. The 
suggested recurrent neural network consists of four 
bidirectionally connected layers. It is shown to be capable of 
solving the algebraic matrix Riccati equations, which enables 
synthesizing linear quadratic control systems in real time.  
In [8] a new alternative for finding of the optimal control for 
discrete systems, which is based on using the continuous 
neural network of Hopfield (CNNH) is developed. The 
quadratic cost function is transformed into energy function of 
CNNH and the control is the output vector of CNNH. As 
CNNH works in parallel and in real time, the method may 
meet all the requirements for control in real time.  
 

ІІІ. CONCLUSION 
 

As a conclusion of the survey of the publication 
considering the optimal control synthesis problem for 
distributed parameter systems of parabolic type and also those 
discussing the utilizing neural networks in the optimal control 
synthesis problems it may be noted the following  
─ Neural networks enable optimal control synthesis in 
real time.; 
─ Important characteristics of the neural networks is their 
property to be universal function approximators but on the 
other hand the good approximation is hindered from the 
possibility of getting trapped in a local minimum; 
─ The problem for neural networks application for 
synthesis of optimal control for distributed parameter systems 
is not investigated entirely (as far as it is known to author only 
one approach is suggested – adaptive critic [12-16]); 
─ It is not pointed out definetely in the publications how 
stable is the suggested controller performance. 
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