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 Abstract – The methods of obtaining the discrete equivalents 
for the models of continuous-time objects without and with time 
delay, as well as some model conversion algorithms, are well-
known in the literature. The discretizing and conversing method, 
presented in this paper, illustrates the use of VAN LOAN’s 
formula for derivation of block triangular matrix exponential 
[1]. 
 Keywords - Control engineering, discretizing problems, 
matrix exponential, system with time delay, model 
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I.  INTRODUCTION 
 In numerous control applications it is usefull to be able to 
find the matrix exponential in an effective manner. Moreover, 
computing integrals involving the matrix exponential is 
necessary, in order to find the cost equivalents in optimal 
control theory, for example. Notice, that Van Loan’s method 
[1] for computing four characteristic integrals, based on the 
derivation of block triangular matrix exponential can be in 
parctice in control theory. Matrix exponential is anyhow one 
of the most frequent computed matrix function [2], and many 
algorithams, developed for that purpose up to now, have bad 
numerical performances [3].   
 A method for computing the exponential of a certain block 
triangular matrix, due to Van Loan [1], is given as follows: 

Theorem1.  Let  in , 1,2,3,4i =   be positive integers and 
set m  to be their sum. If the m m×  block triangular matrix C  
is defined by 
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   (6) 
Corollary to Theorem 1.  Let A , B  and Qc  be real matrices 
of dimension n n× , n p× , and n n× , respectively. Assume 

that matrix Qc  is symmetric ( )=Q QT
c c  and positive semi-

definite ( )0≥x Q xT
c . Following the previous theorem and 

combining various submatrices, it can be shown that the 

integral   
0

( ) de e
T

s sT s= ∫ A AQ Q
T

c   (7) 

can be calculated as 
 3 2( ) ( ) ( )T T T=Q F GT ,  (8) 

where    2 2

3

( ) ( )
exp

( )
T T

T
T
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T
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The need for computing intrgral (7) arises in optimal sampled-
data regulation problem, for example. 
 It is posible to compute the exponential of the matrices of 
low dimension analytically for an arbitary sampling interval 
T .  The advantage of an analytical computation is that the 
result is expressed in terms of different parameters, and it is 
possible to examine the effect of changing these parameters. 
Recall that an arbitrary matrix function ( )f C  can be 
computed via the wellknown Cayley-Hamilton Theorem. 
Moreover, if the matrix C  has distinct eigenvalues, the 
method of eigenvalue decomposition can be use for 
computing matrix function [2], [4]. In this paper the problems 
of discretizing the continuous-time systems without and with 
time delay, as well as the digital model conversion are solved 
by computing exponential of some special form matrices.   
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II.  DISCRETIZING THE MODELS OF ANALOG PLANTS 
 For simplicity, without loss of generality, consider the 
n th-order single-input single-output control object. It is 
convenient to introduce the realization sets as follows [5]: 
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where 
 ( ) e TT= = AA Φ cq ,  (12) 
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Thus, (11) represents ZOH equivalent model for (10) at 
sampling interval T , that is the so called q-model for the 
continuous-time system. Note, that Aq  is matrix exponent, 

and the vector bq  must be computed by integration as shown 

in (13). However, it is interesting to note that both Aq  and 

bq  can be computed simultaneously using a single matrix 

exponential.  
 Define ( ) ( )1 1n n+ × +  block matrix M  as 
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in which the zero in the lower left-hand corner represents an 
n − dimensional zero row-vector. Then, by using Van Loan’s 
formulas (1)-(6) for matrix exponential of TM  can be found    
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Thus, the digital model matrices Aq  and bq  can be 

computed as follows 
 [ ] e T⎡ ⎤ = ⋅⎣ ⎦

MA b I 0q q  , (17) 

whereas 
 [ ] [ ] = ⋅A b I 0 Mc c    .  (18) 
Example 1.  We will use the procedure described in this 
section to compute continuous-time model plant ( ),A bc c  
simultaneously on the basis ZOH equivalent model for the 

plant given by   
21 2 0 1

T T
T

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦
A bq q , where T  is the 

sampling period. To use (15)-(18), we create the matrix  
2

1
1 2
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that has an eigenvalue 1λ =  with multiplicity 3m = . The 
matrix 1M  is positive-definite, and the 3 3×  matrix M  can 
be written as the matrix logarithm 

( ) ( )1 1lnf T= =M M M . 
To calculate this matrix function, some formulas based on the 
wellknown Cayley-Hamilton theorem can be used. Namely, 
the matrix M  can be written as the matrix polynomial of 
degree 2 as follows 

( ) 2
1 1 1 2 1 3= α = α +α +αM M M M , 

To compute the coefficients iα , 1,2,3i =  the scalar function 

( ) (ln )f Tλ = λ , polynomial  2
1 2 3( )α λ = α λ +α λ +α , as 

well as their first and second derivatives with respect to λ  are 
required. These equations are calculated at the eigenvalue 

1λ =  as follows 
(1) 0f =      1 2 3(1)α = α +α +α  

(1) (1) 1f T=  (1)
1 2(1) 2α = α +α  

(2) (1) 1f T= −  (2)
1(1) 2α = α    . 

When the values of 1 1 2Tα = − , 2 2 Tα =  and 3 3 2Tα = −  
are substituted in, the result is  

2 21 2 2 1 2 1 0 0 0 1 01 2 30 1 2 0 1 0 1 0 0 0 1
2 20 0 1 0 0 1 0 0 1 0 0 0

T T T T
T T
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M

Finally, Ac  and  bc  are extracted from the just derived 
matrix M  according to the partitions shown in (15). So, we 

get state-space model ( ),A bc c , with 0 1
0 0
⎡ ⎤= ⎢ ⎥⎣ ⎦

Ac and 

0
1
⎡ ⎤= ⎢ ⎥⎣ ⎦

bc  for the considered double integrator plant.  

III.  MODEL CONVERSIONS 
 Let an integer N denotes the ratio between the slow 
sampling period Ts  and the fast sampling period T , i.e. 

N T T= s . Let ( ), ,A b dqs qs  represents the slow discrete-

time model of the corresponding continuous-time model (10). 
The commonly used matrix continued-fraction method to 
convert ( ), ,A b dq q  to ( ), ,A b dc c , for example is [6]:  
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where  
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The vector bc  can be found by  

 ( ) 1
n

−
−=b A A I bc c q q . (21) 
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The conversion of the fast-rate digital model ( ), ,A b dq q  to a 

slow-rate digital model ( ), ,A b dqs qs  with the slow sampling 

period Ts  can be carried out as follows. According to (21), 

we have ( ) 1
n

−−=b A I A bq q c c , which gives 

 ( )1
n

− −=A b A I bc c q q ,  and  ( ) 1
n

−−=b A I A bqs qs c c .  Thus 

we obtain ( ),A bqs qs   from ( ),A bq q  as 

 N=A Aqs q  (22) 

and     ( )( ) 1
n n

−
− −=b A I A I bqs qs q q . (23) 

 Note that the conversion of the fast-rate digital model to a 
slow-rate one can be obtain in another way by using relation 
(16), i.e.  
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By induction it can be shown that  
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So, the matrices of the Ts  model and T  model have the 
relation   

 N=A Aqs q ,   and    
1

0

N

i

i
−

=

=
⎛ ⎞
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⎝ ⎠
∑b A bqs q q . (26) 

IV.  DISCRETIZING A CONTINUOUS-TIME SYSTEM 
WITH TIME DELAY  

 Consider single-input single-output continuous-time 
system with time delay described in state-space by 
 ( ) ( ) ( )t t u t= + − τx A x b& c c     (27) 

                             ( ) ( )c t t= dx  .           (28) 
It is assumed that the time delay is longer than the sampling 
period T . Let  
  ( )1d T ′τ = − + τ ,  (29) 

where  0 T′< τ ≤   and  ( )1d ≥  is an integer. Discrete-time 
transfer functions of systems with a delay that is not an 
integer times the sampling period are easily obtained by using 
the modified −Zz  transform [7]. The discrete-time state-space 
model of system (27)-(29) is given in literature [8]-[10], [4] 
by 
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or when 2d ≥ , the equations are 
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where    e T= AΦ c   

( )
1

0

' de eT− λ
τ′
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de
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λ
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  (32) 
The output equation is obtained from (28) to be 

 [ ]

( )
( )

( ) 0 0

( )

kT
u kT dT

c kT

u kT T

⎡ ⎤
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⎢ ⎥
⎢ ⎥
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x

d K
M
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Notice that the above equations (30) and (31) contain 
partitioned matrices. Each zero below the matrix Φ  in (30) 
and (31) represents a row vector of n  zeros. Recall, that 
because the signal ( )u t  is piecewise constant over the 
sampling interval, the delayed signal ( )u t − τ  is also 
piecewise constant. However, the delayed signal will change 
between the sampling instants as Fig. 1 visualizes. 

 

Fig. 1. The piecewise constant signals ( )u t  and ( ) ,u t T− τ τ <  
 

To integrate the differential equation (27) over one sample 
period in order to obtain ZOH equivalent model, it is 
convenient to split the integration interval into two parts, so 
that control signal ( )u t − τ  is constant in each part. Hence, the 
motion of the considered dynamical system (27)-(29) in the 
interval ( 1)kT t k T≤ < +  is 

[ ]( ) ( ) ( ) ( ) ( 1)t t kT kT t kT u k T= − + − −x Φ x Θ ,  
                                         kT t kT≤ < + τ  (34) 
and 

( ) ( ) ( ) ( ) ( )t t kT kT t kT u kT= − − τ + τ + − − τx Φ x Θ ,  
                                           ( 1)kT t k T+ τ ≤ < +         (35) 

where  
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( ) et t= AΦ c   and     ( ) ( ) d
t

t t
λ

− λ = − υ υ∫Θ Φ bc .      (36) 

If we now substitute t kT= + τ   in  (34) and   ( 1)t k T= +   in 
(35), we obtain 

 [ ]( ) ( ) ( ) ( ) ( 1)kT kT u k T+ τ = τ + τ −x Φ x Θ , (37) 
and 
 [ ]( 1) ( ) ( ) ( ) ( )k T T kT T u kT+ = − τ + τ + − τx Φ x Θ  . (38)  

 It is clear, that the relations (37) and (38) can be expressed 
as the function of the matrices M  and e TM , given by (15) 
and (16), as shown below: 
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If we substitute (39) in (40) we obtain  
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Note that we can compute the product of the matrix 
exponentials as follows: 
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Finally, the equations (41)-(42) can be compared with (30)-
(32) resulting in  
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1 .

=

=
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Φ A A
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2 1

2

2 1

q q

q
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Example 2. Calculate the ZOH equivalent model for the 
following continuous-time system with time delay 

1 0 1
( ) ( ) ( )

1 1 0
t t u t

⎡ ⎤ ⎡ ⎤
= + − τ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x x& , where 0.2τ =  and  0.3T =  . 

The matrix M  defined in  (15) is 
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A bM
0
c c .  The matrix exponentials are 
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T T TT T−
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M A b
0
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Using (43) we get  

 e 0 1.350 0
0.405 1.350e e

T

T TT

⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
Φ A A2 1q q , 

 0
e 1 0.105

0.005( 1)e 1

T

TT

−τ⎡ ⎤− ⎡ ⎤⎢ ⎥= = = ⎢ ⎥−τ⎢ ⎥ ⎣ ⎦− τ − +⎣ ⎦
Γ b 2q , 

and 

 1
e (e 1) 0.245

0.050e (1 ) e ( 1)

T

T TT T −

−τ τ⎡ ⎤− ⎡ ⎤⎢ ⎥= = = ⎢ ⎥−τ⎢ ⎥ ⎣ ⎦− + τ +⎣ ⎦
Γ A b2 1q q  . 

V.  CONCLUSION 
 This paper deals with a procedure for simultaneous 
computing the both matrices of zero-order hold equivalent q-
model  (Aq and )bq  using a single matrix exponential. It is 

pointed to several applications of this effective approach in 
some control tasks. 
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