
 

An Algorithm for Coupled Electric and Thermal Fields 
in Insulation of the Large Power Cables 

Ion T. Cârstea1 and Daniela P. Cârstea2 

Abstract – Dielectric heating is caused by losses due to friction 
of the molecular polarisation process in dielectric materials. A 
polluted dielectric has a finite resistance so that the leakage 
current in the dielectric heats the dielectric. The problem of 
heating is a coupled thermal-electric problem.  

The paper presents an algorithm based on a 2D model for 
coupled fields in the insulation of a large power cable. The heat 
transfer in insulation is described by the heat conduction 
equation where the heat sources are both internal sources 
generated by the leakage current in a resistive dielectric, and the 
boundary heat sources of the convective and Dirichlet/Neumann 
type. 
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I. INTRODUCTION 

This work deals with the heat generated by ohmic losses 
generated by the electric field in high-voltage cables. The 
problem is described by a coupled thermal-electric set of 
equations. The coupling between the two fields is the thermal 
effect of the electrical current or a material property as the 
electrical conductivity. A computation algorithm is presented 
for coupled problems in two dimensions.  

A numerical algorithm based on the finite element method 
(FEM) is presented describing the solution of two-
dimensional systems. In our example we consider only steady-
state regime for the electric field although many transient 
regimes appear in the behaviour of the electromagnetic 
devices. The assumption is acceptable because the time 
constants for the electric phenomenon are less than the time 
constants for the thermal field. 

The problem of dielectric heating involves two approaches: 
1. The capacitive case. In this case, all the involved 

insulation media can be assumed to be perfect dielectric 
without free charges. The mathematical model is given by 
Laplace’s equation, written with the potential V. The 
conductivity of the medium is zero. In other words the 
dielectric is assumed to be perfectly insulating so that neither 
its permittivity nor the voltage frequency mattered.  

2. The resistive case. In this case the resistive contribution 
is not negligible. 

We consider a coaxial cable with two insulation layers that 
can be imperfect dielectrics. Our target example is selected in 
order to compare the analytical solutions with the numerical 
solutions. At the application of a voltage U, the field changes 
from a purely capacitive distribution to a purely resistive field. 
The field between the initial and final has a time variation. 

Generally speaking there is no perfect dielectric insulation 
so that a leakage current exists. Ohmic losses cause the 
dielectric heating. A parallel-plane model can be used to 
compute the electric and thermal fields.  

II. MATHEMATICAL MODEL 

The electric field distribution can be obtained by 
approximation of the Maxwell equations. These 
approximations take different forms in accordance with 
material properties of the equipment. In modelling of these 
physical systems we must consider both perfect dielectrics 
and imperfect (or polluted) dielectrics.  

In our target example the analysis domain is plotted in the 
Fig. 1.  The mesh with triangular elements is presented. 

The static field distribution can be modelled by the 
following equations: 

JEE ρ==×∇ ;0  
with: ρ - the material resistivity, E - the electric strength 

and J – the current density. 
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Fig. 1. The analysis domain 
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A 2D-field model was developed for a resistive distribution 
of the electric field. An electric vector potential P is 
introduced by the relation [6]: 

PJ ×∇=  
Laplace’s equation describes the field distribution (for 

anisotropic materials): 
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Mathematical model for the thermal field is the conduction 
equation: 
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with:  T (x, y, t)  - temperature in the point with co-
ordinates  (x, y) at the time t;  kx , ky – thermal conductivities; 
γ-specific mass; c – specific heating; q – heating source. 

It is obviously that there is a natural coupling between 
electrical and thermal fields. Thus, the resistivity in equation 
(1) is a function of T, and the heating source q in (2) depend 
on J. Numerical models for the two field problems can be 
obtained by the finite element method. An iterative procedure 
was used for the temperature distribution.  

In dielectric applications we consider the dependency of the 
temperature by the form: 

)exp()exp(0 ET γασσ =  
where: σ0 stands for the conductivity at a temperature of 00 C 
and field strength of 0 kV/mm; α denotes the temperature 
dependency coefficient and γ denotes the field dependency 
coefficient. 

III. NUMERICAL MODELLING 

The differential model can not be solved analytically. A 
numerical model can be obtained by Galerkin’s procedure. 

In general the time dependent problems after a spatial 
discretization can lead to a lumped-parameter model. For 
example, the heat equation, after spatial discretization, lead to 
a system of ordinary differential equations by the form:  
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where [R] and [S] are matrices and b is the vector of the 
free terms. 

The algorithm in pseudo-code has the following structure: 
1. Choose the initial value of the temperature 
2. Repeat 

{Computations for electrical field} 
• Compute the resistivity ρ  
• Solve the numerical model for electric potential P 

{Computations for thermal field} 
• Compute the heating source q by (2) 
• Solve the numerical model for the temperature 

3. Until the convergence_test is TRUE 
 
The convergence test is the final time of the physical 

process but in the internal loop of the cycle  repeat-until we 

have an iterative process because the electric conductivity 
depends highly on temperature T and electric field E.   

We present the numerical model for the heat equation. A 
spatial discretization leads to the ordinary differential equation 
(3). The time discretization of the temperature can be obtained 
by a formula of finite difference: 
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With this approximation, the heat equation (2) becomes: 
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A refinement of the numerical algorithm in pseudo-code 

can have the following form: 
1. Put the iteration counter k on 0 and the initial time t0. 
2. k=k+1 
3. Compute the resistivity value. 
4. Solve the numerical model for the electric potential P 
5. Compute the heat source q in Eqn. 2. 
6. Update the numerical model for the temperature  
7. Solve the numerical model for the thermal field. The 

result is the temperature at the moment tk. 
8. Increase the time with the step δt in order to obtain the 

following step tk. 
9. If the time  tk is less than the imposed limit of the time, 

then jump to the step 2, else stop. 

IV. NUMERICAL RESULTS 

Our example is a high-voltage direct-current (HVDC) cable 
with two insulation layers. The leakage current in dielectric is 
caused by the finite resistivity of the dielectric insulation.  

The geometrical properties of the cable are: 
• the internal radius of the first layer is 15 [mm]; 
• the internal radius of the second layer is 16 [mm]; 
• the external radius of the second layer is 20 [mm]; 
The physical electrical properties are: 
• The voltage of the cable is U=150 [kV]; 
• Resistivity of the first layer is 1. 10 9 [Ω. m] 
• Resistivity of the second layer is 2. 1010 [Ω. m] 
The physical properties are: 
• Thermal conductivity  of the first layer is 

0.271[W/K.m] 
• Specific heat c=1800 [J/Kg.K] 
• Specific mass γ=1300 [Kg/m3] 
• Thermal conductivity of the second layer is 

0.17[W/K.m] 
• Specific heat c=1600 [J/Kg.K] 
• Specific mass γ=1200 [Kg/m3] 
At the application of a high voltage the field has a 

capacitive distribution initially [4]. This distribution is for a 
short time so that it is not interest for the temperature 
distribution.  Finally the field has a resistive distribution. 
Between these limits there is an intermediate field that can be 
computed by an iterative procedure. 
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The analysis domain is the insulation space. The symmetry 
of the problem can reduce the analysis domain to a quarter 
(Fig.1).  

The heat source is the thermal effect of the current in the 
dielectric insulation and the load current of the cable. It is 
obviously that the ohmic losses in the cable conductor are the 
most important heat source. 

A. Constant heat flux 

 In our first case we consider that there is a constant heat 
flux on the interface conductor-insulation. The source of this 
flux is the Joule-Lenz’s effect of the load in the cable. The 
mathematical model for the heat transfer is the conduction 

equation (2). The boundary conditions are Neumann’s 
condition at the interface conductor-insulation, and convective 
condition at the boundary insulation-environment. 

The Neumann's condition can be computed by the 
conductor losses in the case the cable was loaded before 
switching of the step voltage, that is the current in the cable 
has been raised long before and the temperature distribution in 
the cable is stable. In this case the value of the heat flux is 
computed with the relation [1]: 
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with Pcond - the ohmic losses per cable meter in the inner 
conductor as Joule-Lenz’s effect. 

Thus, Neumann’s condition is: 
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with C1 – the interface of the cable conductor and 
insulation. 

At the interface insulation-environment we consider a 
convective condition by the form: 
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with h – the convective coefficient, T∞ - the ambient 
temperature and C2 – the boundary of the cable and the 
external medium. 

In Fig.2 the temperatures vs. time at external surface of the 
conductor the curve 1 (green), and environment surface – the 
curve 2 (red) are plotted. The time interval was 60 [s]. The 
convection coefficient h was 12 for an environment 
temperature 308 [K] (35 0C). 

In the Fig. 3 the final distribution of the temperature in the 
radial direction is plotted. The width of the insulation is 5 
[mm]. 

B. Constant temperature 

Another practical assumption in electrical engineering is a 
Dirichlet boundary condition at the interface conductor- 
insulation. For our target example we considered a constant 
temperature of the conductor surface and a convective 
condition at the boundary insulation - environment. In 
numerical simulation the conductor temperature was 
considered as 100 0C (373.16 K).  

In Fig. 4 the temperature versus time is plotted in two 
interest points. The first curve denoted 1 (green) is the 
temperature at the external surface of the first layer. The curve 
2 (red) represents the temperature at the external surface of 
the cable.  

From the engineering viewpoint the assumption of 
Neumann’s condition seems more realistic. The heat flux at 
the conductor surface can be estimated more accurate than the 
conductor temperature. 

An accurate model can be obtained by including the 
conductor in the analysis domain. This approach increases the 
computational effort. This case was presented in reference [2]. 

We presented insulation with two layers. But in advanced 
technology the first layer at the conductor surface is a 

 Fig. 2. Temperature versus time 

Fig. 3. Final temperature in radial direction
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semiconductor. In this way the variation of the electrical field 
at the interface conductor-insulation is smooth.  

In these two examples we considered a steady-state regime 
of the electric field. This is a practical situation but there are 
cases where the voltage has step variations so that a transient 
regime appears as a natural situation [5]. 

V. CONCLUSION 

In this paper we presented an algorithm for coupled electric 
and thermal fields in the insulation of the large power cables. 
A parallel-plane model was considered both for electrical field 

and thermal field. The numerical models were obtained by the 
finite element method in a 2D space. 

As target example we considered a cable with two-
insulation layer. The resistivity of the insulation was 
considered as finite value. In this case the ohmic losses of the 
leakage current in insulation generate supplementary losses. 
The principal heat source remains the losses in the cable 
conductor. 

As first example we considered a constant heat flux on the 
interface conductor-insulation. In practice, the heat flux is 
dependent on the temperature of the cable conductor. By the 
numerical simulation we can consider all practical cases in the 
operating regimes of the cable.  

In the second example we considered a constant 
temperature of the conductor. 
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Fig. 4. Temperature versus time for Dirichlet condition 
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