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Abstract – The paper presents the analysis and control of 
electrical field in the mechanical connectors of the high-voltage 
(HV) cables.  In the cable terminals a field enhancement occurs 
because the core has a sharp edge and the shield is interrupted.  
A mechanical connector links the cables and controls the electric 
field using special materials to ensure a homogeneous potential 
distribution.  

We present the analysis of the electric field in connectors and 
the control of the electrical field using Raychem technology. A 
semiconductor shield and a control tube can optimise the field 
distribution in cable connectors and terminals. 
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I. INTRODUCTION 

The problem of the analysis and control of the electrical 
fields in cable terminals is an open problem that involves a 
multidisciplinary research. The problem of an insulated 
electrical conductor fitting into a grounded screen is a 
common configuration in many electromagnetic devices so 
that the results from our case can be extended in other similar 
areas. 

We consider a high-voltage cable (Fig. 1) where the 
significances of the components are [1]: 1 – conductor; 2 – 
phase insulation; 3 – a layer for field control; 4 – a 
semiconductor shield. 

 
Fig. 1. Cable terminal 

The role of the control tube is to do a uniform distribution 
of the field lines and electrical field in terminal. The material 
of the tube has a volume resistivity and permittivity controlled 
rigorously. The tube has a non-linear resistivity with 
behaviour of a varistor. It has a direct contact with the 
semiconductor shield of each terminal of the two cables that 
are connected. 

At the joints of two cables the mechanical connectors can 
be used [1]. In Fig. 2 an axial section of the connection is 
presented with the following components: 1 – conductor; 2 – 
phase insulation; 3 – control tube; 4 - muff insulation; 5 – 
semiconductor layer; 6 – the connector; 7 – a special material 
for filling (mastic); 8 – semiconductor layer (mantle). 

Fig. 2.  An axial section in muff 
 
Generally speaking there is no perfect dielectric insulation 

so that a leakage current exists. Ohmic losses cause the 
dielectric heating. A parallel-plane model can be used to 
compute the electric and thermal fields.  

The tube for the field control covers the semiconductor 
shields of each cable terminal of the muff. The mastic has a 
high permittivity and realises a uniform distribution of the 
electrical field. In this way the electrical stresses are reduced 
at the cable terminals. The muff insulation is in direct contact 
with the external semiconductor and the thick is selected to 
prevent the partial discharges in the separation zone [1]. 

II. MATHEMATICAL MODEL 

The electric field distribution can be obtained by 
approximation of the Maxwell equations. These 
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approximations take different forms in accordance with 
material properties of the equipment. In modelling of these 
physical systems we must consider both perfect dielectrics 
and imperfect (or polluted) dielectrics. The control layer of 
the field has a finite resistivity and controls the electrical 
stress in the terminals.  

The static field distribution can be modelled by the 
following equations [2]: 

JEE ρ==×∇ ;0  
with: ρ - the material resistivity, E - the electric strength 

and J – the current density. 
A 2D-field model was developed for a resistive distribution 

of the electric field. An electric vector potential P is 
introduced by the relation: 

PJ ×∇=  
Laplace’s equation describes the field distribution (for 

anisotropic materials): 
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Mathematical model for the thermal field is the conduction 
equation: 
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with:  T (x, y, t)  - temperature in the point with co-
ordinates  (x, y) at the time t;  kx , ky – thermal conductivities; 
γ-specific mass; c – specific heating; q – heating source. 

It is obviously that there is a natural coupling between 
electrical and thermal fields. Thus, the resistivity in equation 
(1) is a function of T, and the heating source q in (2) depend 
on J. Numerical models for the two field problems can be 
obtained by the finite element method. An iterative procedure 
was used for the temperature distribution.  

The imperfect insulation leads to local heating of the 
connectors so that a coupled model can be a good approach of 
the electrical field computation. In our work we consider the 
electrical properties are constant with the temperature. 

III. CONTROL OF THE FIELD DISTRIBUTION 

In the real engineering, the designer of an electromagnetic 
device starts from an imposed performance of the device and 
tries to reach the performance by a command that can be a 
distributed or boundary command. In the area of the electrical 
engineering we can have a parametric optimisation. 
Practically, there are three possible parameters [3]: 
• A physical property as electrical property (for example 

the permittivity); 
• The excitation of the system (voltage or electrical 

current); 
• A geometrical parameter  (configuration, dimensions in 

any direction etc.) 
 
In our target example, there are many regions involving 

different materials as conductor, semiconductor and 
dielectrics (insulation). In a synthesis problem we seek the 
material property – the permittivity that needs to be used in a 

certain part of the device. In other words, the optimisation 
parameter that we seek is the permittivity of those parts so that 
the object function goes to the extreme value. Gradient 
techniques can be used to reach the optimum parameter. 

Optimisation with respect to geometry of the device is 
much more complex than with respect to material or 
excitation. 

IV. NUMERICAL RESULTS 

We considered the example from the figure 2. Because of 
the symmetry the analysis domain is limited to a half of the 
field domain. In the Fig. 3 the meshed domain is plotted with 
the axis Oz as symmetry axis (the horizontal line). 

The finite element method was used for numerical 

simulation. The program Quickfield [4] uses the triangular 
elements. 

 

 
 

Fig. 4. Equilines of potentials 
 

The geometrical properties of the device are: 
• the radius of the conductor is 5 [mm]; 
• the external  radius of the phase insulation is 12 [mm]; 
• the external radius of the control tube is 16 [mm]; 
• the external radius of the muff insulation is 28 [mm]; 
• the external radius of the second semiconductor layer  

is 31 [mm] 
• the width of the internal semiconductor layer is 1 

[mm]; 
• the external radius of the connector is 10 [mm]; 
• the length of the connector is 15 [mm]; 
The physical electrical properties are: 
• The voltage of the cable is U=10 [kV]; 
• Relative permittivity of the first insulation  layer is 3.5 
• Relative permittivity of the muff insulation  layer is 4 
• Relative permittivity of mastic is 6 
• Relative permittivity of control tube is 2 
In the Fig. 4 the distribution of the field lines are plotted for 

the data mentioned above. 

Fig. 3. Meshed domain for a muff 
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In our simulation tests we considered many values of the 
permittivity of the mastic. In Fig. 5 the variation of the 
electrical field at the external radius of the phase insulation is 
plotted. If the value of the permittivity of the control tube is 

increased at 8, the distribution of the electrical strength is 
modified. In the zone of the joint, the electrical field strength 
is reduced (see Fig. 6). 

It is obvious that we can find an optimum value of the 
material property (in our case the permittivity) so that an 
objective function can reach a minimum value. In our 
particular application the objective function is a measure of 
the deviation of the electrical field from a desired value. The 
solution of the inverse problem is done iteratively.  

V. CONCLUSION 

In this paper we presented some aspects of analysis and 
control of the electric field in cable connectors. We limited the 
discussion at the material properties as optimisation 
parameter. The influence of the material properties on the 
field distribution in connectors is analysed. The numerical 
models were obtained by the finite element method in a 2D-
space [4]. 

An optimisation with respect to geometry is an open 
problem that involves increased computational efforts. At 
each step of iteration the application software must rebuild the 
mesh of the finite element program. To simplify the 
optimisation process, the initial problem is divided into 
subproblems so that the gradient technique that involves 
differentiation with respect to geometry is divided into 
differentiation subproblems. 
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Fig. 6. Strength E versus space (εr=8) 

 
Fig. 5. Strength E versus space (εr=6) 
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