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Abstract – In this paper, the untransposed HV transmission 
line influence on the degree of unbalance in power systems is 
presented. The model of untransposed HV line with ground 
wires is given in phase and sequence domain. The proposed 
model is used for asymmetrical load-flow solution by Newton-
Raphson procedure, incorporated in the Neplan 5.0 software. All 
400 and 220 kV unbalanced transmission lines in the power 
system of the Republic of Macedonia are taken with real 
parameters and asymmetrical state is analyzed. The unbalance 
factors for negative- and zero-sequence voltages for 400 and 220 
kV buses are calculated. Positive-sequence voltages from 
asymmetrical state are compared with phase voltages from 
symmetrical state for the same power system, when the 
transmission lines are treated as balanced.     
 

Keywords – Untransposed HV transmission lines, unbalance 
factors, asymmetrical load-flow. 

I. INTRODUCTION 

The three-phase power system consists of several networks 
with different rated voltages, connected with two or three-
winding interconective transformers. The elements in the 
power system can be balanced (with equal phase parameters) 
or unbalanced (with different phase parameters). Practically, 
all generators, transformers, transposed lines and symmetrical 
loads can be treated as balanced elements. The untransposed 
and asymmetrical loads are treated as unbalanced elements. If 
there is even only one unbalanced element, asymmetrical state 
in power system is occurred and sequence voltages and currents 
are present in the power system buses and elements.  

The presence of sequence components causes negative 
influence on the elements correct function. For example: 
negative-sequence currents at generator terminals rise heating in 
their rotors; malfunctions of protective relays; zero-sequence 
currents increase greatly the effect of inductive coupling between 
parallel transmission lines; higher power system losses; zero-
sequence currents in the ground wires and through the ground, etc.   

The degree of deviation from the symmetrical state can be 
valued with the unbalance factors for negative- and zero-
sequence voltages or currents. When a system has adverse 
unbalanced factors, the transposition on phase conductors at 
substations or all through the lines should be applied.  

 
 
 
 
 
 
 
 

 

It should be noted, that in this research all loads are treated 
as balanced elements. 

The unbalance factors can be calculated from the sequence 
components (for voltages or currents). If these components are 
not on disposal, they are obtaining by transformation of the 
corresponding phase values. Values of phase nodes voltages 
or elements phase currents for the three-phase power system 
states, which deviate more or less from symmetrical states, are 
obtaining with asymmetrical load-flow (ALF) calculations. 
The solution of ALF problem was successfully performed using 
methods in phase domain (Newton-Raphson and Fast decoupled 
procedures) [1] and faster methods in sequence domain [2], [3].  

II. UNTRANSPOSED HV TRANSMISSION LINE 
MODEL  IN PHASE AND SEQUENCE DOMAIN 

If the HV transmission line has a considerable length, and 
phase conductors are not transposed, it can causes a 
significant negative- and zero-sequence components. Usually, 
because of the great costs for the transposition towers and 
insulators, line transposition is avoided. Practically, the 
transposition is recommended if inequality (1) is satisfied: 

)kmkV()km()kV( 5000 ⋅≥⋅ Vn LU ,    (1) 

where nU  is rated voltage in kV and VL  total line length in 
km [4]. It is shown that inequality (1) is satisfied for 220 and 
400 kV lines, but should be checked for 110 kV lines. For 
exact unbalance factors calculation, a proper mathematical 
model of three-phase HV transmission line should be defined. 
In steady state problems, three-phase transmission line is 
represented by lumped-π circuit. The series reactance and 
inductance are lumped between line ends and shunt 
capacitance of the transmission line is divided into two halves 
and lumped at line ends [1], [2] and [5].  

Let us consider a three-phase unbalanced transmission line 
with one ground wire. 

A. Series Impedance of a Transmission Line 

The series impedances of phase conductors and ground 
wire with earth influence, which are mutually inductive 
coupled, are illustrated in Fig. 1.  

The following equation for the line ends voltage difference 
can be written for phase a:   

accabbaaaaa LjILjILjRIVV ωωω ⋅+⋅++⋅=− ′ )(  

nnangag VILjILj +⋅−⋅+ ωω .     (2) 
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The voltage and current of the fictive earth conductor, signed 
as n, are given with next equations: 

nbbnaannnn LjILjILjRIV ωωω ⋅−⋅−+⋅= )(  

nggncc LjILjI ωω ⋅−⋅− ,      (3) 

gcban IIIII +++= .       (4) 

Substituting Eqs. (3) and (4) in Eq. (2) gives: 

gnagcnacbnabanaaa IZIZIZIZV ⋅+⋅+⋅+⋅=Δ −−−−  (5) 

Writing similar equations for the other phases and ground 
wire, the following matrix equation results: 
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The series impedances line model with only three phase 
conductors is more convenient and it can be established in few 
steps. At first, matrix Eq. (6) should be presented in 
partitioned matrix form as follows: 
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Multiplying the partitioned matrices results with equations: 

gBabcAabc IZIZV +=Δ ,       (8) 

gDabcCg IZIZV +=Δ .        (9) 

Assuming that the ground wire is at zero potential 
( 0=Δ gV ), from Eq. (8) and (9) can be obtained the final 
three phase conductors model for the transmission line in 
matrix form: 

abcabcabc IZV =Δ .        (10) 

The abcZ  impedance matrix includes phase self-
impedances and mutual inductive couplings with influence of 

earth and ground wire(s). All elements of this matrix can be 
calculated from the matrix equation: 
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Usually, instead of impedance matrix, the series admittance 
matrix 1-

abc
z

abc ZY =  is applying for the line model. 

B. Shunt Capacitance of a Transmission Line 

Shunt mutual capacitive couplings for the three phase 
conductors, ground wire and earth are illustrated in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The potentials of the line phase conductors and ground wire 

are related to the conductor charges by the matrix equation: 
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where ,
aap , ,

abp , …, ,
ggp  are potential coefficients. On the 

same way, as it was conducted for the series impedances, the 
only three phase conductors line model for the shunt 
capacitances could be established. Taking into account the 
zero potential of the ground wire(s) and Eq. (12), potentials of 
the line phase conductors with included influences of earth 
and ground wire(s) in matrix form are: 

abcabcabc QPV = .       (13) 

The capacitance matrix can be easy calculated as: 
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Usually, the shunt admittance matrices Eq. (15) corresponding 
to the line ends are applying instead of capacitance matrix.  
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Fig. 1. Series mutually inductive coupled line impedances.

n 

g 

a 

b 

c 

n 

Fig. 2. Shunt mutually coupled line capacitances. 
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abc
s
abc j CY ω

2
1

= .        (15) 

Finally, the series and shunt admittance lumped-π model of an 
untransposed transmission line (connected between buses k 
and j) represented with three-phase compound admittances is 
shown in Fig. 3.   
 
 
 
 
 
 
 
 
 
 

Following the rules developed for the formation of the 
admittance matrix using the compound concept [1], the bus k 
and bus j injected currents can be related to the nodal voltages 
by the equation: 

(6,1)6,6)((6,1)
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Above explained procedure can be used for formation the 
lumped-π model of an untransposed transmission line with 
more than one ground wire.  

Series and shunt admittances can be converted in sequence 
domain using transformation matrix Ts and equations: 

s
z

abcs
z

dio TYTY ⋅⋅= −1        (17) 

s
s
abcs

s
dio TYTY ⋅⋅= −1 .       (18) 

Now, the lumped-π model of an untransposed transmission 
line in sequence domain can be presented as in Fig. 4. 

 
 
 
 
 
 
 
 
 

 

Finally, the mathematical model in sequence domain can be 
presented in matrix form with Eq. (19), similar as it was 
presented for the phase domain. 
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Inductive and capacitive mutual couplings among positive-, 
negative- and zero-sequence circuits are expressed with 
nonzero off-diagonal elements in matrices z

dioY  and s
dioY . 

Instead of mutually admittances, the couplings can be 
expressed by compensation current sources. Thus, the 
unbalanced line model can be presented with three decoupled 
sequence circuits. The mutual couplings are replaced by 
corresponding controlled sources – current sources. More 
detailed explanation for the untransposed transmission lines 
modeling in phase and sequence domain is given in [1, 2], [5]. 

III. ASYMMETRICAL LOAD-FLOW SOLUTION 

The phase voltages for all buses of the entire power system 
can be obtained performing the ALF solution. Because the 
sequence voltages are of interest for unbalanced factors 
definition, it is appropriate to use the ALF methods 
established in sequence domain. Presented results in this paper 
are obtained by Newton-Raphson method in sequence domain 
[2], incorporated in the Neplan 5.0 software [6]. This method is 
based on the system of three matrix equations each one related to 
the decoupled positive-, negative- and zero-sequence equivalent 
circuit of the power system (Eqs. (20), (21) and (22) respectively).  
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iii IVY =⋅ ,         (21) 

ooo IVY =⋅ .     (22) 

Actually, the matrix Eq. (20) has the same form as the 
equations that represent the symmetrical Newton-Raphson 
load-flow model. The other two supplementary systems given 
by Eqs. (21) and (22) are systems of linear equations.  

IV. STUDY CASES − CALCULATION OF UNBALANCE 
FACTORS   

The influence of untransposed HV transmission lines on the 
degree of unbalance was studied on the entire power system 
of the Republic of Macedonia. In the performed analyze are 
included 50 buses of 400, 220 and 110 kV voltage level, 53 
lines, 5 interconnective  transformers and 9 equivalent 
generators with step-up transformers. All 400 and 220 kV 
lines are untransposed, and real phase arrangements shown in 
Fig. 5 are taken into account.   
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Fig. 3. Lumped-π model of an untransposed transmission line in  
           phase domain. 
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Fig. 4. Lumped-π model of an untransposed transmission line in  
           sequence domain. 

Fig. 5. Phase conductors and ground wire arangement for untransposed 
           a) 400 kV line and b) 220 kV line (*produced by EMO-Ohrid).  
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The mentioned power system is shown in Fig. 6, only with 
buses in which the unbalance factors are calculated. The rest 
parts of Macedonian power system and connections with 
neighborhood’s power systems are presented with blocks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Two cases with all balanced loads were studied. In the first 
case, all transmission lines are treated as balanced. The 
solution for voltages in each node of the system buses shows 
that only positive-sequence voltages exist and they are equal 
with phase voltages. For this case the voltage in phase (node) 
a for the bus j is denoted as j

abalV  and it is equal with positive- 

sequence voltage j
dV . This notation is necessary for 

definition an unbalanced factor for positive-sequence 
voltages, when asymmetrical state of the system is compared 
with the symmetrical state for the same system. In this case 
total active power loss is MW22,31=Δ balP . 

In the second study case, all 400 and 220 kV lines are taken 
with their real parameters. Presence of six 400 kV lines with 
total length of 376,7 km, one 220 kV line with 65,2 km and 
one 110 kV line with length of 40 km (build on 400 kV 
towers), cause asymmetrical state and appearance of sequence 
voltages and currents. Because the sequence components have 
unwanted effects on the power system elements it is desirable 
to measure the degree of system unbalance. For this purpose 
the unbalance factors (usually in %) are introduced. 
Unbalanced factors for positive-, negative- and zero-sequence 
voltages are given with Eq. (23) respectively. 
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abal

d
d V

VF ;   100⋅=
d

i
i V

VF ;   100⋅=
d

o
o V

VF .  (23) 

If %100=dF  and %0== oi FF  power system is in 
symmetrical state. Asymmetrical power system states, which 
deviate more or less from symmetrical state have greater or 
smaller unbalanced factors iF  and oF . Results from study 
cases are shown in Table I. Although, the unbalanced factors 
for negative- and zero-sequence voltages are small, the total 
active power loss in second case is MW28,37=Δ unbalP . 

TABLE I 
RESULTS FOR UNBALANCED FACTORS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 

The presence of untransposed HV transmission lines causes 
asymmetrical states in the power system. These states have 
unwanted effects on the power system elements and there is a 
need for their quantification. For evaluation of the unbalance 
degree, the unbalanced voltage factors are introduced. In this 
paper, the procedure for untransposed line modeling in phase 
and sequence domain is presented. Decoupled-sequence line 
model is applied in the Newton-Raphson method for 
asymmetrical load flow calculation incorporated in Neplan 5.0 
software. Two real state cases of the Macedonian power 
system are studied. Results from the studies show that in the 
case with untransposed lines, although the unbalance factors 
are small, total active power loss growth for 6 MW, against 
the case when lines are treated as transposed. 
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Fig. 6. Untransposed lines and their connections in power system of   
           the Republic of Macedonia - PSMK. 
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