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Abstract – The artefacts impede the analysis of the 
electroencephalogram’s (EEG) signal and should be handled 
properly. The most common and characteristic kinds of artefacts 
are the electrooculographic (EOG) ones, especially subject’s eye 
blinks. In this paper an analysis of the duration of the EEG 
section, polluted by eye blinking artefacts is described with a 
connection of using the EEG for brain-computer interface (BCI), 
working with α- and μ-rhythms (range 8-13 Hz) brain potentials. 
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I. INTRODUCTION 

A direct Brain Computer Interface (BCI) is an assistive 
device that accepts commands directly from the human brain 
without requiring any physical movement. The ultimate goal 
of such an interface is to provide effective communication 
without using the normal neuromuscular output pathways of 
the brain, but by accepting commands directly encoded in the 
neurophysiological signals. BCI should be able to detect 
user’s wishes and commands while the user remains silent and 
immobilized.  

For people who are locked-in after having lost all voluntary 
muscle control due to advanced amyotrophic lateral sclerosis, 
brainstem stroke or muscular dystrophy, BCI may be their 
only means of communication with the environment. 
Obviously, brain-computer communication is vital for people 
with such severe motor disabilities to increase their quality of 
life.  

BCI may be as useful for people without any disabilityes 
too. In the Alternative Control Technology (ACT) program of 
the US Air Force Research Laboratory [11] they use EEG to 
achieve hands free control by US military pilots. 

To be as effective as possible, an ideal BCI should allow 
the user to determine when a command is to be initiated, 
provide multiple independently controllable channels, and 
support high information transfer rates. It is unlikely that an 
ideal BCI will be available in the near future, but a simple 
reliable interface providing single switch control would also 
be beneficial for locked-in patients. 

The majority of research on human brain-computer 
communication has been performed using 

electroencephalographic [1, 5, 6] (EEG) recordings which are 
well studied, easily available, and noninvasive. The less 
widely used electrocorticogram (ECoG) [4]  is only available 
if subjects require electrode implantation on the cortical 
surface for clinical treatment or evaluation, and research 
access could be scheduled around clinical activities. 
Compared to EEG, ECoG recordings have less vulnerability 
to artefacts, superior spatial resolution, giving ECoG the 
potential to allow brain-computer communication with greater 
functionality, although a surgical risk exists at every time. 

Designing a BCI system one can choose from a variety of 
features that may be useful for classifying brain activity, 
recorded during mental tasks performance. The EEG is 
measured, sampled, and next used for a communication. 
Depending on the BCI, particular preprocessing and feature 
extraction methods are applied to the EEG sample(s) 1-1.5 s 
of length. It is then possible to detect the task-specific EEG 
signals or patterns from the EEG samples, with a certain level 
of accuracy. A classifier that could be Statistical Model 
Neural Network (SMNN), Hidden Markov Models (HMM) or 
variations of Linear Discriminant Analysis (LDA) then 
classifies these features.  

EOG stands for electro-oculographic artefacts, which 
appear in the EEG as a result of subject’s eyes moving and 
blinking. Eye blink artefacts are easy to distinguish. In time 
domain they show enormous high amplitude relative to the 
other EEG signal and supposed could have an influence on the 
control. 

II. PROBLEM STATEMENT AND STUDY 
DESCRIPTION 

This study is done during a work on a project for creating a 
BCI, started in Delft University of Technology, The 
Netherlands in 2004. Professor drs dr Leon Rothkrantz, head 
of Man-Machine Interaction research group, Faculty of 
Electrical Engineering, Mathematics and Computer Science 
supervised the project. 

During the experiments the subjects performed different 
mental tasks, among them mental rotation, motor imaginary, 
mathematical calculations, visual presentations etc., issuing 
different patterns in mu (μ) and alpha (α) rhythmic brain 
activity frequency ranges, which after a successful 
classification could be used for building a BCI. 

In a result of the experiments a database, which contains 40 
sessions EEG data, around 20 minutes each, recorded from 
two subjects (male, 25 and 30) was prepared for use together 
with a tool for a statistical analysis (“R”, “MATLAB”). 
Second stage was processing the EEG from the database and 
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finding (if possible) a specific pattern for every mental task. 
After classifying the tasks, some of them with more clear and 
well-expressed pattern could be chosen for using for BCIs 
control. One of the questions to be solved was how to deal 
with the subject’s eyes’ blinks caused EOG artefacts. 

Sources exist [1], where the researches process the data, 
containing eye-blinks. From other side, other sources exist [6, 
7], where is stated, that eye-blinks could lead to errors in BCIs 
research and work. The decision was taken to study the power 
spectrum of the EOG artefacts and define their influence on 
EEG in connection with the chosen working frequency range. 

After this study was done [9], the conclusion was made that 
the EOG artefacts influence on EEG range 8-13 Hz is 
significant and they should be eliminated from the data before 
the feature extraction. For further data processing a decision 
was taken first to cut the blinks and only after that process the 
data. Even doing this action by hand, the question about the 
length of the polluted by the eye-blink segments of data arises.  

Some authors [3] simply omit the trials where they discover  
eye blinks. They achieve this automatically by linearly 
detrending and removing those time series whose maximum, 
rectified EOG amplitude, exceeded a threshold. If the blink 
appears at the end of a trial, its influence could contaminate 
the next trial. Segments for processing are 1-1.5 s long. Blink 
influence could last longer. From other side, cutting blindly 
long segments with blinks will discard useful parts of EEG 
and slow down BCIs work. 

Other author [2], Fig. 1, recognizes and marks the blinks by 
using parameters of the EEG waveform where it has the 
highest amplitude. Later the marked EEGs are intended to be 
used by medical doctors. Study about the length of the 
polluted by blinks segments is not reported.  

 

 
 

Fig. 1. Parameters, used in [2] to recognize eye blinks 
 
 Blinks, recorded during different sessions and tasks are 

shown in Fig. 2. Except their high amplitude in the low 
frequency range they do not have any specific and repeated 
forms. The length of some of them exceeds 1s (256 samples). 
The duration of their visible part in the time domain is 
different and subject-dependent. In fact they depend on the 
subject’s emotional stress,  fatigue, eye dampness, etc. 

The study described in this paper continues the work in 
[10]. To find the duration of the influence of the blink to the 
EEG, Gabor transform is used, according to (1) 
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Fig. 2.  Blinks with different forms and durations in time domain 
 

N  - number of samples for the analysis, 

)(nH  - thn  sample of Hamming window with length N  , 

),( tnx  - thn  sample of the current segment, with offset t  
from the beginning of the EEG. 

The study uses 6-seconds EEG sections with blinks, to 
envelop parts before and after the blink. The blink is centered. 
Every section is divided to segments 1 s each with 0.25 s 
overlapping. Moving average filter is used along to equal 
frequencies in neighbour segments after Fourier analysis is 
done. The results are given as 3D plots in Figs. 3 and 4. 

First a similar to Fig. 1 blink’s form is chosen - Fig. 2a, 
session 132, task 36, run 1. The position axis marks in Fig. 3 
correspond to the real frequency as (position –1)=frequency, 
Hz. The distance between the tick marks in time scale is 0.25 
s. In all channels amplitude variations of some frequency 
components in the range of 8–13 Hz are noticed 
synchronously with 2 Hz-low frequency component, caused 
by the blink (in C3, Fig. 3a, and P3, Fig. 3b, at 11 Hz, and in 
O1, Fig. 3c, at 10 and 11 Hz). No matter that the white noise 
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is slightly filtered, each time in α-range exists a frequency 
component(s)  which amplitude follows  caused by the eyelids 

 
a) 
 

 
b) 
 

 
c) 

Fig. 3. Spectrogram for C3, P3, O1, session 132 
 

low frequency. The visible part of the eye blink in the time 
domain, Fig. 2a, is around 128 samples - 0.5 s. Following the 
2 Hz component  amplitude,  the  duration  where  it  is  rising 

 
a) 

 

 
b) 

 

 
c) 

Fig. 4. Spectrogram of a “longlasting” blink, C3, P3, O1, session 231 
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(comparable to its steady state) is 12*0,25=3 s. The changes 
of 11 Hz frequency amplitude are similar. 

The spectrograms of more complex and long lasting blink 
from Fig. 2b, session 231, task 36, run 1, are shown in Fig. 4. 
Although three visible periods of the low frequency could be 
seen there, this is one blink. The visible part in the time 
domain lasts above 1 s (more than 256 samples). The power is 
higher in the low frequency part of the range. The 8 Hz part is 
most affected. Similar to the previous case, the eye blink 
influence lasts in average 3 s. 

The analysis of blinks with different forms and durations in 
the time domain results in almost equal length of 3 s of the 
affected section. 

Unlike [12], where is stated that average blink duration is 
100 ms in our EEG records in the time domain the visible part 
of the blinks are from 200 to 1100 ms long. Most of them last 
around 500 ms. 

By reason of the different forms (subject-dependent) it is 
impossible to define eye blinks duration in the time domain. 
More important characteristic of the blinks is their influence 
over α-range frequencies. Blinks with different forms in the 
time domain affect different frequencies between 8 and 13 Hz. 
These frequencies appear synchronously with the 2 Hz 
frequency component. 

III. CONCLUSIONS 

In all channels the blinks amplitude is more than 5 times 
higher than the amplitude of the blink-free EEG data. 

The power of the eye blinks is concentrated up to 3 Hz 
range. 

Eye blinks could be recognized in the time domain by 
controlling the amplitude of the raw EEG or in the frequency 
domain by controlling the 2-3 Hz power. 

In the range 8-13 Hz in segments, which contain blinks, the 
power of frequency components is more than 50% more in 
comparison to blinks-free EEG parts. 

When the analyzed segment contains a blink, the power in 
all channels varies, which lowers the probability of a correct 
classification of the mental tasks’ patterns. 

It was decided to omit the EEG segments, which contain 
eye blinks. 

The power of work frequencies (8-13 Hz) could be 
followed from the spectrograms of all the channels. 
Depending on the blinks form in the time domain different 
frequency components change sinchronously with the 2 Hz 
frequency, where the blinks power is concentrated.  

According to the study, rejecting 3 s section is quite enough 
to have blinks free neighbor parts. 
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