

Synthesizing Sine Wave Signals Based on Direct Digital
Synthesis Using Field Programmable Gate Arrays

Hristo Z. Karailiev1 and Valentina V. Rankovska2

Abstract – Analysis of the design flow for creating devices and
systems based on Altera’s Field Programmable Gate Arrays
(FPGA) has been made in the present paper. The digital part of
the sine wave synthesizer based on FPGA has been designed.
The synthesizer is realized using the development system TREX
C1 of Terasic Technologies Inc.

Keywords – Field Programmable Gate Arrays - FPGA, Design

flow, Direct Digital Synthesis – DDS, Sine wave frequency
synthesizer.

I. INTRODUCTION

The method for direct digital synthesis (DDS) [1] of signals
with arbitrary form is well known, but for a long time its wide
implementation has been prevented by the low level of the
technology development. Various methods for producing
arbitrary form output are known – analogue and digital. The
DDS method has some advantages: high resolution; it allows
an extremely fast transition to another frequency with
continuous phase; the digital implementation allows easy
realization of microprocessor control. These advantages
determine its growing usage in functional generators, various
modulations in the communications, etc.

Various digital implementations of DDS synthesizers have
been described in the literature: based on discrete components
and low scale integrated circuits, such as dividers, counters,
etc.; modern application specific integrated circuits, such as
AD9851, AD9858, AD9857 and lately based on Field
Programmable Gate Arrays (FPGA).

A drawback of the application specific integrated circuits is
the fact that they produce output of certain form, for instance
AD9851 produces stable frequency and phase-programmable
digitized analog output sine wave. They are not so suitable for
applications, where signals with arbitrary wave form have to
be created, for instance functional generators. That is why in
the present work field programmable gate arrays have been
used. This approach will allow in a single chip to integrate
many functions for creating arbitrary form output [3].

Aim of the report::
Design and implementation of a sine wave synthesizer

based on the direct digital synthesis method and field
programmable gate arrays.

Main problems of the report:
• Analysis of the design flow for creating devices and

systems based on Altera’s FPGA;
• Designing the table, including the values of the sine

wave;
• Designing the digital part of the sine wave synthesizer,

based on FPGA of Altera;
• Implementation of the synthesizer using the

development system TREX C1.

II. DESIGN FLOW WITH QUARTUS II
SOFTWARE

The characteristics, features and resources of FPGA of
leading producers have been outlined in [7] and a device of
Altera has been chosen. The software of Altera Quartus II
Web Edition v.6.1 has been used at the design process.

The main stages of the design flow with Quartus II are
shown in Fig 1 [5].
• Entering the design of a device or system can be

implemented in one of the following ways:
 As a program, written in one of the following hardware

description languages – AHDL, VHDL, Verilog HDL.
The integrated text editor of Quartus II can be used. The

software allows using so called MegaWizard Plug-In
Manager. It supplies the designer with high level library
blocks – megafunctions, which the designer can
parameterizes. MegaWizard Plug-In Manager creates
automatically the necessary files to include in the project
according to the chosen programming language.

 As a block diagram.
The block editor of Quartus II is used. The block diagram

may include library blocks and logic gates entered and
parameterized with MegaWizard Plug-In Manager and also
user blocks, created with the symbol editor of Quartus II.
• Defining requirements for the project and settings

of Quartus II
Defining in advance requirements for the project and some

settings of the software allows controlling the functions and
the features both the software and the created design in order
to increase its effectiveness. They are made by some program
parts of Quartus II. Some of the assignments and requirements
refer to: design files, the device used, timing requirements,
etc. Some conditions for the design optimization in relation to
the resources of the selected chip, the power consumed, time
intervals, maximum frequency, compilation time can be also
defined.

1Hristo Z. Karailiev is with the Technical University of Gabrovo,
H. Dimitar 4, 5300 Gabrovo, Bulgaria, E-mail:
hkarailiev@gmail.com

2Valentina V. Rankovska is with the Technical University of
Gabrovo, H. Dimitar 4, 5300 Gabrovo, Bulgaria, E-mail:
rankovska@tugab.bg

637

Synthesizing Sine Wave Signals Based on Direct Digital Synthesis Using Field Programmable Gate Arrays

Fig. 1. Design flow with Quartus II

• Design compilation
Several consecutive processes take place at the compilation

stage: analysis and synthesis, place and route, assembling and
timing analysis. During every of the upper stages the design
has been checked for its correctness. This stage is an iteration
process – we can return to a previous one if it is necessary (if
there are some errors) – till we receive a properly operating
design.

At the Analysis and Synthesis the design database is
created. Analysis & Synthesis performs logic synthesis to
minimize the logic of the design, and performs technology
mapping to implement the design logic using device resources
such as logic elements. It groups register and combinational
resources into individual logic cell-sized units in order to use
resources efficiently. It examines the logical completeness and
consistency of the project, and checks for boundary
connectivity and syntax errors. It also optimizes the design for
instance making choices that will minimize the number of
resources as using functions, which are optimized for Altera
devices.

During the Place and Route the defined timing and logic
requirements are matched to the resources of the selected
device. The most suitable place of the logic functions in the
device logic cells is found and the most suitable
interconnections and pin assignments are selected.

The Assembling completes the design processing,
producing files for programming the device and information
for the consumed power.

The Timing Analysis is a method of analyzing, debugging,
and validating the performance of a design. Timing analysis
measures the delay along the various timing paths and verifies
the performance and operation of the design. These paths are

the connections between the logic cells in the device as
reference signals, data, etc. We can specify constraints and
assignments that help the design meet timing requirements. If
we specify constraints or assignments, the Fitter optimizes the
placement of logic in the device in order to meet those
constraints. After that timing analysis calculates the time
needed the signals to reach their destination. It can also
calculate signal transitions.
• Design simulation
At the simulation test and settings of the logic operations

and timing relations in the design is made. First a file with
input stimuli for the design input pins is created. Depending
on the needed information we can make functional or timing
simulation and to test the logical operation and timings in the
worst case for the current design. We can estimate the
simulation results visually. If the design needs to be corrected
that can be made in the design entry. The compilation and the
simulation repeat after that.
• Device Programming
At the programming the files produced by the compiler are

loaded into the device and it is configured. But first
assignment the design pins to the physical device pins is done.
The design is compiled again and the device is programmed.

III. ARCHITECTURE OF A DDS SINE WAVE
FREQUENCY SYNTHESIZER

An architecture of a frequency synthesizer, used for
creating a frequency grid, is shown in [3], based on a study of
many references. The presented block diagram can be used for
producing arbitrary form signals. In the current design it is
used for implementing a sine wave frequency synthesizer
(Fig. 2).

Σ PhR LUT DAC LPF
PIR

N n

n

n k

m fout

Reference
clock

fc

mixed digital
analog part

digital part

Fig. 2. DDS frequency synthesizer

Briefly the DDS synthesizer operates in the following way:
The digital equivalent of the produced frequency is loaded
into the phase increment register PIR. That value is
continuously added to the value, accumulated in the adder ∑.
The most significant k bits of the result address the Look-Up
Table (LUT). In our case the LUT includes a set of values
defining the form of the sinusoid. The values, derived from
the table, are passed to the Digital Analogue Converter (DAC)
to receive an analogue signal and after that to a low-passed
filter (LPF) to reject the unwanted components of the signal
and its smoothing out.

638

Hristo Z. Karailiev and Valentina V. Rankovska

PIN_28 VCC
clk INPUT

PIN_220
PIN_219
PIN_218
PIN_217

m[3..0]OUTPUTaddress[5..0]
clock

q[3..0]

lpm_rom0

inst2

DFF
data[29..0]
clock q[29..0]

lpm_dff0

inst1

q[29..0]

q[29..24]

A

B
A+B

dataa[29..0]

datab[29..0]
result[29..0]

lpm_add_sub0

inst
VCC

N[29..0] INPUT

Fig. 3. Functional circuit of the digital part of the sine wave frequency synthesizer

IV. DESIGNING A SINE WAVE FREQUENCY
SYNTHESIZER WITH FPGA

• Creating the project of the sine wave frequency
synthesizer

Fig. 3 shows the functional circuit of the digital part of the
sine wave frequency synthesizer, which is implemented in
Altera’s FPGA Cyclone EP1C6Q240C8 [2]. The registers and
the adder are chosen to be 30 bits wide (n=30).

The development system TREX C1 of Terasic
Technologies Inc. [6] has been used at designing and
examining the frequency synthesizer. It has the following
resources: fТГ=50 MHz, FPGA Cyclone EP1C6Q240C8, three
4-bit DACs. For the present implementation of the sine wave
synthesizer one four-bit DAC (shown in Fig.3) variant and
eight-bit DAC variant have been used. A standard three-tap
Π -type LC filter has been used.
• Creating and Filling in the LUT Table
The output signal YROM, passed to the input of the DAC can

be expressed by Eq. (1):

 YROM={sin[π .(N-2k-1)/2k-1]}.(-1).(2m-1-1)+(2m-1-1) (1)

where: k – the number of the address inputs of LUT; 2k – the
number of the cells in the LUT; 2k-1 – the number of the cells
for the positive (negative) part of the sinusoid; 0N ∈ ÷2k-1 –
the current number of the cell in the LUT, matching the
current number of a point of the sinusoid; m – the length of
the cells, represented in a number of bits (the resolution of the
DAC); M=2m – a level scaling factor; 2m-1-1 – an offset of the
sinusoid on the ordinate, in order to receive positive values of
the function.

The values YROM are mixed fractions and can’t be loaded in
that way into the LUT. That is why they must be rounded and
that operation is a source of errors.

The limited number of address inputs k of the LUT and the
length p of the cells, define the non-linearity of the output
sinusoid. To increase the linearity using the DDS method it is
necessary k and m to be relatively big numbers. On the other
hand to increase the spurious-free performance it is necessary
to take into account the Eq. (2) [6]:

 k=m+2 (2)

In the case of 4-bit DAC m=4, k=6, Nmax=2k =64, M=
2m=16. The values received for YROM and r

ROMY in relation to

the current number of the cell 0N ∈ -63, are shown in Fig. 4,
and Table I includes the exact and the rounded values, loaded
into the MIF file in Quartus II.

0

2

4

6

8

10

12

14

16

1 6 11 16 21 26 31 36 41 46 51 56 61

Addresses (N)

V
al

ue
s (

M
)

a

b

Fig. 4. Output signal, defined by the calculated (a) and rounded (b)

values for the amplitude at Nmax=64

In the case of 8-bit DAC m=8, k=10, Nmax=1024, M=256.

The values loaded in the MIF file (Fig. 5) are too much that is
why they are not shown in a table.

0

50

100

150

200

250

300

1 67 133 199 265 331 397 463 529 595 661 727 793 859 925 991

Addresses (N)

V
al

ue
s (

M
)

Fig. 5. Output signal, defined by the calculated and rounded values

for the amplitude at Nmax=1024

In Quartus II a new file is opened with File/New/Other

Files/Memory Initialization File. We define the size of the
MIF file, in our case 64 addresses, 4-bit cells. An empty MIF

639

Synthesizing Sine Wave Signals Based on Direct Digital Synthesis Using Field Programmable Gate Arrays

TABLE I
CONTENTS OF THE LUT

N YROM
r
ROMY N YROM

r
ROMY

0 7.68612 8 32 6.31388 6
1 8.365632 8 33 5.634368 6
2 9.031993 9 34 4.968007 5
3 9.678784 10 35 4.321216 4
4 10.29978 10 36 3.700223 4
5 10.88899 11 37 3.111008 3
6 11.44075 11 38 2.559247 3
7 11.94975 12 39 2.050253 2
8 12.41107 12 40 1.588927 2
9 12.82029 13 41 1.179713 1

10 13.17345 13 42 0.826551 1
11 13.46716 13 43 0.532843 1
12 13.69858 14 44 0.301418 0
13 13.8655 14 45 0.134503 0
14 13.96629 14 46 0.033707 0
15 14 14 47 0 0
16 13.96629 14 48 0.033707 0
17 13.8655 14 49 0.134503 0
18 13.69858 14 50 0.301418 0
19 13.46716 13 51 0.532843 1
20 13.17345 13 52 0.826551 1
21 12.82029 13 53 1.179713 1
22 12.41107 12 54 1.588927 2
23 11.94975 12 55 2.050253 2
24 11.44075 11 56 2.559247 3
25 10.88899 11 57 3.111008 3
26 10.29978 10 58 3.700223 4
27 9.678784 10 59 4.321216 4
28 9.031993 9 60 4.968007 5
29 8.365632 8 61 5.634368 6
30 7.68612 8 62 6.31388 6
31 7 7 63 7 7

file appears, in which we fill in the calculated with the
program Excel values, and we save the file.
• Simulation and experiments with the design
The simulation of the digital part of the design has been

made (Fig. 6), and also experimental study of the DDS
synthesizer operation as a whole (including DAC and LFP),
proving its proper operation.

Fig. 6. Output waveforms passed to the DAC

V. CONCLUSION

The contributions of the present work are the following:
• Analysis of the design flow for creating devices and

systems, based on FPGA;
• Designing the digital part of the sine wave frequency

synthesizer;
• Implementing the synthesizer using the development

system TREX C1.
The design is to be expanded as follows:
• Examining the noise sources and reducing their

influence [4];
• Producing signals with various modulations – FSK,

PSK, I-Q, etc.

REFERENCES

[1] A Technical Tutorial on Digital Signal Synthesis, Analog
Devices, Inc., 1999.

[2] Cyclone Device Handbook, vol. 1, Altera Corp., 2005.
[3] H. Karailiev and V. Rankovska, “DDS Method for Generating a

Frequency Grid at Systems for Test Control and Automated
Regulation”, ICEST 2006, Conference Proceedings, pp. 300-
303, Sofia, Bulgaria, 2006.

[4] H. Karailiev and V. Rankovska. “Error Sources at Direct Digital
Synthesis Signals”, ICEST 2007, Conference Proceedings,
Ohrid, Macedonia, 2007. (forthcoming)

[5] Quartus II Version 5.0 Handbook. Vol. 1: Design & Synthesis,
Altera Corp., 2005.

[6] TREX C1 Development Kit Getting Started User Guide. Terasic
Technologies Inc., 2005.

[7] V. Rankovska, “FPGA Families, Features, Resources, and
Devices and Systems Design Technology”, Unitech 2006,
Conference Proceedings, pp. І-202 – І-207, Sofia, Bulgaria,
2006 (in Bulgarian).

640

