
 

Developing and Using Communication Driver for Serial  
Communication Between PCs and Industrial PLCs 
Zoran M. Milić1, Petar B. Nikolić2, Dragana Krstić3 and Miljana Lj. Sokolović4 

Abstract – The basic principles of the asinhronius serial 
communication between PLC controllers and PC based 
applications are presented in this paper. In order to create HMI 
interface between operator and the controller at the machine, the 
Windows based application for vizualization and data acquisition 
was developed. This application is using self-oriented driver for 
serial communication which was developed and used for 
purposes of communication and data exchange between 
industrial controllers working at machines in the plant floor, and 
PCs. Basic principle of generating communication packets and 
examples of writing data into PLC’s memory registers are given. 
This driver is also used in self-oriented SCADA programming 
for data exchange between SCADA application and controllers 
on the industrial network. 
 

Keywords – PLC, industrial network, network layer. 

I. INTRODUCTION 

For visualization of the interface between the operator and 
the machine, it is possible to use different hardware solutions, 
from the industrial panels, intended only for these purposed 
and related to a particular PLC type, to the industrial and non-
industrial PC’s with a proper operating system installed as 
well as the appropriate user’s application program. For the 
realization, it is suitable to use common personal computer 
since it enables the enlargement of the system and the 
integration into the wider information system. 

The industrial application specific panels have no ability for 
multi-tasking work. They need additional communication with 
PCs or other controllers in the control system where complex 
calculations are needed. With the respect to those calculations, 
a change of the data in the registers of the controllers takes 
place as well as the activation of the appropriate outputs. 
These panels have neither additional ports, nor the ability to 
install additional cards (PCI, PCE express) that are obtained 
as a part of the sensors’ and actuators’ kits. When the 
industrial panels are connected to the larger industrial 
network, and one of the devices blocks its message 
transmition, this can break the communication of the entire 
network.  

For the communication between the PC and the controller, 
communicating applications of the controllers’ manufacturer 
can be used, or a specific communication driver can be 
developed. The communication software enables an easy 
integration into the application for the machine control, or into 
the SCADA software, and this decreases the time needed for 
the entire system realization. Some of these communication 
software are in the same time OPC servers so that they allow 
relatively easy integration of the data sources devices from 
different manufacturers into the unique visualization and 
acquisition systems. 

Writing its own communication driver allows good 
controller management. It is possible to adjust the operating 
mode, which is switching between the programs, run and test 
modes, which is very useful for application testing. Managing 
the program upload and download to and from the controller 
is possible to be achieved directly, through the serial interface, 
or through the network, using the proper network module. In 
this way, the change of the status registers, control of the 
restart or switching of the controller, and the memory 
initialization can be achieved. Direct changing the parameters 
of the communication link (for example, baud rate, parity bit, 
stop bit, hardware/software control, BCC/CRC) is possible, 
and this represents the advantage considering the entire 
system testing. HMI (Human Machine Interface) applications, 
which communicate with the controller directly over the 
driver, perform it in the real time.  

This solution has better diagnostics abilities, enables an 
acceptable real-time response of the machine, gives a bigger 
independence, but also increases the entire system design and 
development. Beside the time needed for the design, the 
important factor in the solution choice is the prize. In the case 
of SCADA application design, the prizes of the both system 
are comparable, since  

In the case of SCADA application design, the prizes of both 
systems are similar since the number of the acquisition places, 
and though the places than need the communication software, 
relatively small, comparing to the number of PLC’s in the 
system. By the HMI applications, the situation is different. 
The number of places that need the communication software 
is the equal as the number of PLC controllers - that is, each 
machine must have PLC and the particular interface toward 
the operator, which communicate with that PLC. In this case 
the prize of developing particular driver is much lower than 
buying a new solution. 

 
 

1Zoran M. Milić is with the Tigar MH, Pirot, Serbia E-mail: 
zrondjul@yahoo.com 

2Petar Nikoić is with the Tigar MH, Pirot, Serbia E-mail: 
nikpetar@tigar.com 

3Dragana S. Krstć is with the Faculty of Electronic Engineering,
University of Niš, Serbia E-mail: dragana@ elfak.ni.ac.yu 

4Miljana Lj. Sokolović is with the Faculty of Electronic 
Engineering, University of Niš, Serbia E-mail: 
miljana@venus.elfak.ni.ac.yu  

649



Developing and Using Communication Driver for Serial Communication Between PCs and Industrial PLCs 

II. NETWORK LAYERS OF THE COMMUNICATION 
MODEL 

Network architecture of the DF1 industrial network has 
physical layer, data layer, network layer and the application 
layer [1]. 

In the case of serial RS232/RS422 communication, physical 
layer consists of the RS232/RS422 ports at the PC and PLC, 
RS232/RS422 cable that connects them, voltage values (zeros 
and ones), number of data bits, number of stop bits, parity bit, 
bit rate, and the way of establishing and breaking the 
connection after PC and PLC finish the data transfer [3].  

The data connection layer controls the correctness of the 
data transfer, and the protocol at this layer should provide the 
mechanism for the acknowledgement of the correct data 
transmission and reception [2]. 

The network layer controls the packet transmission to its 
destination, which is for establishing the connection between 
the nods of the network [4].  

Application layer in the case of PLC and PC 
communication contains the commands that are set and 
executed by the PC and the PLC applications. 

III. DF1 LAYER OF THE DATA CONNECTION 

DF1 is the Allen Bradley's protocol for the data connection 
layer, which is based on the ANSI x3.28 specification. The 
basic principle of the DF1 protocol will be explained at the 
example of Full Duplex data exchange [1]. 

 

 
Fig. 1. The data routes for alternating simultaneous communication 

(Full duplex) 
At the Full Duplex protocol (Fig. 1), link uses two 

physically separated circuits for the simultaneous data 
exchange. These circuits provide communication at four 
communication channels.  
 In the first circuit the transmitter A sends messages to the 

receiver B (the route 1) and the receiver A send the 
returning control messages to the transmitter B (route 3). 

  In the second circuit the receiver B sends messages to the 
receiver A (the route 4) and the receiver B sends the 
returning control messages to the transmitter A (the route 
2). 

All messages and the symbols in each of these circuits are 
transmitted in one direction; from A to B in the first, and from 
B to A in the second. 
 In order to implement 4 logical routes in 2 physically 

separated circuits a software multiplexer must be used. Its 
purpose is to combine the command messages (from the 
transmitter) with the returning messages (from the 
receiver) as well as with the replies from the transmitter 
sent in the same direction. 

 At the other end of the link, the separator software 
separates the command messages from the returning reply 
messages. The separator software should send the 
command messages to the particular receiver and the 
returning messages to the corresponding transmitter.  

 Although the command and the returning messages in the 
same circuit exist independently from one another, there 
is a certain relation between them. For example, the 
command message in the AB circuit will be delayed if the 
returning message of the receiver A is inserted into the 
sequence of the common messages of the transmitter A. 
Each hardware problem that influences the command 
symbols in one circuit will also have the influence at the 
returning symbols in the same circuit [1]. 

IV. GENERATION AND SEPARATION OF THE DATA 
FRAME IN THE FULL DUPLEX PROTOCOL 

The data frame in the Full Duplex protocol has different 
forms depending on the observed network layer, and 
considering the fact that different message parts are generated 
in different network layer. Fig. 2 illustrates how the particular 
network layer influences generating the message frame [5]. 
The influence of the physical layer is not shown. 

 
Fig. 2. Data frame: from the top to the bottom: application layer, 

network layer, data connection layer 
The command (for example, read or write) is generated at 

the application layer, as well as the destination (the address of 
the PLC controller in the network) and the data related to that 
command (for example, in the case of reading, this would be 
the specification of the first memory location and the size of 
the block to be read).   

The network layer is responsible for establishing 
connection between the communicating nodes, and the 
address from which the message is transmitted is added here 
(so that returning message has the correct destination address), 
transmission status field (which contains the error code for the 
eventual transmission errors), and the identifier, which is a 
unique for each message (in order to know which returning 
message is the reply to the given command). 

Data connection layer is intended for the control of the 
correctness of the transmitted data – one more field is added 
for the beginning and one for the end of the message as well 
as the field for the error control. 

In order to design the corresponding HMI solution one 
needs to develop a driver which cover a wide spectrum of 
communication messages that enable: reading and writing into 
and from the controllers’ registers, changing the content of the 
status registers, changing the parameters of the 

650



Zoran M. Milić, Petar B. Nikolić, Dragana Krstić and Miljana Lj. Sokolović 

communication link itself, and simultaneous covering 
relatively large number of communicating devices. 

The driver is the application specific for the asynchronous 
serial communication with the Allen Bradley PLC 5 and the 
SLC 5 families of the controllers as well as for the Allen 
Bradley KF2 communicating module [6]. 

The developed driver supports the following set of 
commands: 

For PLC 5 family of controllers and a KF2 module: 
 “Word Range Read” – reading the block of words from 

the controller’s memory 
 “Word Range Write” – writing the block of words into 

the controller’s memory 
 “Typed Read” – reading the block of data from the 

controller’s memory (this command is also supported for 
the SLC 5/03 and SLC 5/04 processors from the SLC500 
family) 

 “Typed Write” – writing the block of data into the 
controller’s memory (this command is also supported for 
the SLC 5/03 and SLC 5/04 processors from the SLC500 
family) 

 “Read – Modify - Write” – bit write command 
 “Set Variables” – adjusting the parameter of the serial 

link – the number of the ENQ packets, the number of the 
NAK packets and the timeout interval 

 “Set CPU Mode” – changing the controllers' operating 
mode: Test, Program and Run 

 “Diagnostic Status” – reading the content of the 
controllers' status registers 

For the SLC 500 and the MicroLogix 1000 family of 
controllers: 
 “Protected Typed Logical Read With Three Address 

Fields” – reading the block of data from the controllers' 
memory, starting from the given address  

 “Protected Typed Logical Write With Three Address 
Fields” – writing the block of data into the controllers' 
memory, starting from the given address  

 “Change mode” – changing the controllers' operating 
mode: Test, Program and Run 

 “Diagnostic Status” – – reading the content of the 
controllers' status registers 

V. EXAMPLE 

For communication between the PCs and the PLCs in the 
systems that control machines in the tires industry, 
asynchronous serial communication is commonly used. The 
role of the interface between the controller and the operator is 
given to the applications installed at the industrial PC. The 
reason for that is the additional processor power that system 
needs for processing the parameters obtained from the smart 
sensors, which is the task that most of PLCs cannot satisfy, or 
the prize of it implementation is to high. 

The communication during one working cycle of the 
different machines is performed in a similar manner. The 
controller sends a request for the recipe data from the user 
application over the asynchronous serial communication. The 
data are read from the particular sensors and according to their 
content, the application reads some parameters from the data 

bases and calculates the parameters of the recipe. According 
to these data, the machine's parameters are adjusted, and the 
corresponding machine's operating cycle can begin. During 
the cycle, several communication sessions between a PC and a 
PLC can appear. During one session, a certain amount of data 
needed for the machine control is successively written into, 
and read from the registers of the controller in order to obtain 
the data needed for the additional analysis in the PC. 

After completing the cycle and the analysis, performed by 
the user's application, the results of the processing should be 
written into the data base, and the signal for the initialization 
of the next cycle should be sent. 

The described HMI application is implemented using the 
Microsoft Visual Basic.NET 2005 developing tool [7].  

The example shows writing four integer words (1111, 
decimal) into the u Allen Bradley PLC 5/20 processor over 
the serial link, starting from the N8:31 memory location. To 
do this a command “Word Range Write” was used. In a 
similar manner, an entire communication over the serial link 
is performed, where the packets contain all necessary 
commands, addresses and data. During this procedure the 
following data exchange takes place (Fig. 3): 
 The application sends a data for writing into the driver, 

that is, it specifies the writing command, all four words of 
the data and the destination address of the controller 

 The driver generates the entire data frame for sending 
 The transmitter of the driver sends the packet to the 

receiver of the PLC 
 The receiver of the PLC receives the packet, forwards it 

for processing to the processor and sends the control 
message about the successful reception of the packet 
(DLE ACK) to the link 

 After the writing command is successfully completed, 
PLC processor forwards the message about the successful 
reception to the transmitter. 

 The transmitter of the controller sends the message to the 
link 

 The receiver of the driver receives the message about the 
successful writing, the application forwards that message 
and sends the control message about the successful data 
reception (DLE ACK) to the link. 

Fig. 3. Illustration of the packet exchange over the serial link 

A. The driver 

The driver was developed as a C#.NET Class Library. 
Since it represents an interface between the user's HMI 
application and the physical layer of the network, the 
following class properties were implemented: 
• command – it is a command that forwards the application.  

651



Developing and Using Communication Driver for Serial Communication Between PCs and Industrial PLCs 

• address – represents the address of the controller in the 
network 

• mem_address - specifies the starting address in the 
controller's memory where the writing is taking place 

• packet_offset – specifies the offset in regard to the of the 
given mem_address value 

• total_trans – specifies the total number of the data words 
for writing into the controllers' memory during the entire 
transaction 

• sent_data – dada, forwarded by the application 
• error_check – can have CRC or BCC 
• receive_data – the driver forwards these data to the 

application 
• nak – the number of the NAK packets 
• enq – the number of the ENQ packets 
• time_out – time interval for timeout 
• mode – operating mode  
• comm_status 

 
Fig. 4. The example of the class code 

The class also contains the method "communicate" that is 
used by the application for forwarding the request for 
establishing communication with the controller.  

 
Fig. 5. Writing the dimensions parameters 

The procedure in which the class is used for forwarding the 
data between the HMI application and the controller is given 
next: 

• A new object with a dh class is created in the application  
• The appropriate class properties are set – depending on 

the command properties, some of the properties are not 
necessary 

• In order to inflict the controller to send the command, the 
method "communicate" must be invoked 

• Coding the memory address, generating the TNS value, 
calculating CRC or BCC field and assembling the entire 
packet is performed within the class frame 

• The class itself performs the communication toward teh 
controller 

• When class extracts all corresponding data, it sets the 
"receive_data“ property 

• After a certain amount of time the application reads the 
"receive_data“ and "comm_status“ properties 

• If the property "comm_status“ is set to "True“ value, 
depending on the program logic, the property 
"receive_data“ is used further 

• If the property "comm_status“ is set to "False“ value, the 
property "receive_data“ is not used further, and 
depending on the program logic, the command could or 
could not be repeated. 

VI. CONCLUSION 

Developing the unique own communication driver for the 
communication between PCs and PLCs in the machine control 
HMI interface design process enables better diagnostics, good 
real-time response of the machine and gives larger 
independence comparing to  the use of the communication 
application offered by the machine manufacturer. The own 
solution and its integration into the HMI application increases 
the time needed for the design of the entire system, but at the 
same time the prize of developing the own driver much lower 
than the prize for buying the entire solution and no addition 
license expenses are necessary for each application installed 
later. The paper describes the communication model that uses 
asynchronous serial communication, and one practical 
realization of writing data obtained in a PC and needed for 
machine control, into the controllers' registers, and reading 
data needed for additional PC analysis or for updating the data 
shown on the screen. 

REFERENCES 

[1] -, “DF 1 Protocol and command set – Reference Manual”, 
Publication 1770 – 6.5.16, Allen_Bradley, Milwaukee, USA, 
1996. 

[2] Andrew S. Tanenbaum, “Computer Networks”, London, 
Prentice Hall PTR, 2002. 

[3] -, “Data Highway or Data Highway Plus Asynchronous (RS-
232-C or RS-422-A) Interface Module” User Manual, 
Allen_Bradley, Milwaukee, USA, March 1989. 

[4] Anthony Chiarella, “Networks in Cisco and Microsoft 
technology (in Serbian)”, Čačak, Computer library, 2005. 

[5] -, “Data Highway Plus and DF1 Communication Protocols”, 
Allen_Bradley, Milwaukee, USA, 2004. 

[6] -, “Allen-Bradley DF1 Serial Communication Interface API”, 
DASTEC Corporation, 2003. 

[7] Michael Halvarson, “Visual Basic.NET Step by Step”, CET 
Computer Equimpent and Trade, 2002. 

652


