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Abstract –Analysis of characteristics for quantum well laser 
diode  are presented in this paper. The performed analysis had 
been based on analytical and numerical calculations. Some 
adequate program from literature are modified and executed for 
given calculator architecture. The variation of principal lasing 
parameters is performed. 

 
Keywords – Quantum well lasers, p-n diode, Transparency 

threshold,  Two-dimensional critical densities,  Diode laser. 

I. INTRODUCTION 

Lasers and amplifiers on semiconductor materials more and 
more  replace other type of lasers. We can see almost daily 
apperance of come new semiconductor lasers with different 
coloring (blue, yellow, ...). The output of the other laser types 
were obtained, either directly, with parameter changes, or by 
Raman’s or some other processes (frequency coupling), but 
output from small active material (comparing with large ionic 
and other lasers) were far better. On the one hand, this is in 
context of the semiconductor technologies papers, and on the 
other hand, semiconductor lasers work on many possible 
pumping ways. They can also be used as pumps with the other 
laser types. 

After the first laser diodes, double heterostructure lasers, a 
line of quantum weel, quantum dot, quantum wire lasers 
appeared. There are also new types of  VCSEL, VECSEL 
with a vertical resonators, etc. The main problems in all types 
are relations between laser characteristics: amplification, 
threshold, pump power, resonator configuration and 
efficiency. Efficiency is generally connected with pumping 
way, but here analysed type is type of active material that you 
should go theoretically and to aproach high levels of 
efficiency. Beside the general approaches, like with the other 
types that have these parameters, there are also some 
peculiarties with every separate type. Transparency threshold 
was chosen as a problem in this parer. 

II. TRANSPARENCY THRESHOLD 

Fig. 1 shows the p-n diode which containing a single 
quantum well [1]. 

  
Fig.  1.  A forward biased p-n diode containing  a single 

quantum well. 
 

Injected carriers accumulate in this well by forward 
biasing the diode. The carrier density per unit area ns ,can be 
expressed as: 
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Fig. 2. Quantum well: a) band diagram; b) subband structure; 

c) associated  Fermi-Dirac distributions; 

 
Fig. 2. Quantum well: d) gain curve 
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A population  inversion which lead  to transparency [4] in the 
quantum well (Fig. 2) can be obtained with a sufficiently 
elevated current densities. The quasi-Fermi levels begin to 
penetrate the subbands close to transparency. Only the n=m=1 
subbands are involved. The gain can be expressed as:  
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The absorbtion coefficient  D2α  (cm-1) represent the 
absorbtion for a quantum well with zero population [1]. 

 
The quasi-Fermi levels, EFc i υFE  are given by the 
conditions: 
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These conditions can be calculated precisely if the state 
densities for electrons ( eD,2ρ ) and holes ( hhD,2ρ ) are known. 
For electrons, Eqs. (3) and (4) can be expressed as: 
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where the energy at the top of the valence band is taken to be 
zero. Setting ukTEE Fc =− )/)exp((  and  

cFcg ukTEeE =−+ )/)exp(( 1  Eq. (5) takes the form: 
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so that: 
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where , cn  and 
υ

n , are two-dimensional critical densities 
given by: 
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It will be shown that transparency and threshold densities can 
be expressed as a product of these two-dimensional critical 
densities by a factor close to 1, typical between 1 and 5.  
 

 
Fig.  3. Evolution of the gain curve for a quantum well laser 

for increasing pump currents. 
 

The Fermi distributions in subbands n and m are given with: 
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 We can calculate gain in this way: for a given current 
density  J, calculate the carrier density (Eq. (1)), then quasi-
Femi levels (Eqs. (7) and (8)),and finaly the gain with the help 
of  (2) and  Fermi functions (11-14). The gain curve as a 
function of photon energy for increasing carrier densities. is 
presented in Fig. 3. The dotted curves show the gain values at 
zero temperature. The black  curves (1) correspond to low  
pump current conditions. The grey curves (2) correspond to 
high pump current conditions We note an abrupt  increase in 
the gain for  11 hheEh g ++>υ . The maximum gain   

maxγ     is obtained when  11 hheEh g ++=υ    : 
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Eqs. (7), (8) and (11-14) allow to relate the value of the Fermi 
function  to the carrier density    sn : 
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Similarly: 
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The maximum gain can be writen as: 
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where    )/( chhc mmR =υ   is the ratio of the effective 
masses for carriers in the conduction and valence bands.  

 
 

Fig.  4. Normalized gain as a function of normalized carrier 
surface density. 

 
Fig.  4 shows the variation in maximum gain as a function of 
reduced carried surface density 

c
nns /  with R=6.8 (GaAs) 

and R=1. It is obvious that the gain increases rapidly once the 
transparency condition has been reached, but saturates 
quickly. This results from the form of the two -dimensional 
density of states. From (14) the maximum gain becomes 
positive when the transparency threshold is reached once. 
When the transparency threshold   trn  is reached: 
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For   1=υcR , we have )2ln(ctr nn = . The transparency 

current is always related to cn   by a numerical factor close to 
1. It explains the importance of the concept of the two-
dimensional density of states  cn  . The transparency condition 

for different values of  υcR  is presented in Fig.  4. We note 
that it is advantageous to have closely matched effective 
masses between the valence and conduction bands.  

 The variation in maximum gain   maxγ , as a function 
of carrier surface density is logarithmic: 
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where the constant  0γ  depends only on the effective mass 

ratio  υcR . For values of n which approach the transparency 
threshold, the Eq. (20) leads to behaviours close to those 
predicted by  (18).  
  

III. RESULTS OF PROGRAM P1 

In order to analyze ratio between Eqs. (18) and (20) a 
procedure has been modeled and modified in 
MATHEMATICA program, given in the reference [1]. 
Equality presentation has been done using P1. 
 
P1: Equality presentation between (18) and (20). 

 
 
The graphics shown in Fig. 5 are the results of execution of 
the program P1. 
 

 
 

Fig.  5. Result  of program P1 
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IV. ANALYSIS OF RESULTS 
 

Fig.  5  compares expressions (18) and (20). By 
fitting, we find that    D20 48.0 αγ =   . 
 
For GaAs, the two-dimensional state densities are: 
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The two-dimensional critical density in the 

conduction band is  kTn eDc ,2ρ=  or 
2111213 1025.70259.0108.2 −−− = cmxeVxeVcmx . That 

is presented in Fig.  4. In GaAs, 
2121016.16.1 −== cmxnn ctr . In a 100Å (10 nm)  wide 

quantum well, this coresponds to a transparency threshold 
density of   3181016.1 −cmx  . The result is very close to that 
obtained for bulk material. The advantage of using quantum 
wells structures does not involve decreasing the threshold 
carrier densities, but rather in decreasing the transparency 
current densities and hence the threshold current densities.  
 

 
Fig.  6. Modal gain for a quantum well laser at two different 

carrier densities 
 

The gain curve for a quantum-well laser is very complex. 
As the carrier densities increase in the wells, the electrons and 
holes populate higher energy states in the subbands and bring 
into play complex transitions: first the  11 hhe −    transitions, 

then 22 hhe − . Modal gain for a quantum well laser at two 
different carrier densities is presented in Fig.  6 shows. Both 
the 11 hhe −  and 22 hhe −  transitions can be observed under 
the higher current injection conditions . 

 
 
 

IV. CONCLUSION 

We analyzed the appropriate theories [1-7] and lasing 
condition. For the chosen model, we analyzed existing 
programming. For selected lasing parameters, we calculated 
maximum gain. The results correspond to the literature and 
the program works in defined domains. 
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