

Web Application of Traveling Salesman Problem using
Genetic Algorithms

Milena N. Karova1, Julka Petkova2 and Stoyan P. Penev3

Abstract – This paper introduces online method for finding a
solution to the travelling salesman problem using a genetic
algorithm. The travelling salesman problem comes up in
different situations in out world. It is a special kind of
optimisation problem. There had been many attempts to address
this problem using classical methods, such as integer
programming and graph theory algorithms with different
success. The solution, which this paper offers, includes a genetic
algorithm implementation in order to give a maximal
approximation of the problem, modifying online a generated
solution with genetic operators.

Keywords – genetic algorithms, TSP, travelling salesman
problem, optimisation, selection, genetic operator, crossover,
mutation.

I. INTRODUCTION

Genetic Algorithms are stochastic search methods that
mimic the metaphor of natural biological evolution [1].
Genetic Algorithms (Gas) operate on a population of potential
solutions applying the principal of survival of the fittest to
produce better and better approximations to a solution. At
each generation, a new set of approximations is created by the
process of selecting individuals according to their level of
fitness in the problem domain and breeding them together
using operators from natural genetics [3]. This process leads
to the evolution of populations of individuals that are better
suited to their environment than the individuals that they were
created from, just as in natural adaptation.

Gas model natural processes, such as selection,
recombination, mutation, migration, locality and
neighborhood

II. ONLINE SOLUTIONS OF TRAVEL SALESMAN
PROBLEM

In the Internet world there are many web sites for solving
Travel Salesman Problem (TSP). Usually the solutions are

Java applets [4]. It proposes random choice of city’s number
N (between 1 and 9). The city’s distance represents matrix
NxN. The algorithm terminates in two away: finding optimal
distance or using definite number of iterations.

This algorithm contains two important disadvantages: small
city’s number and limit population size.

The Ga TSP solving in the University in Ohio offers to user
defining city’s location on the work area manually [5]. The
population size is programming limited. If the city’s number
is big, the absence of automatically drawing of cities is
disadvantage [6].

Generally the following actions are performed to compute
the shortest path:

• Fitness function: the sum of distances between all
cities

• Chromosomal Representation: sequence of
numbers containing a permutation of the first n
numbers represented as an array; e.g. 1-2-3-4-6-5

• Selection method: K-tournament selection
• Initialization: Random
• Genetic Model: Generate the next generation from

the scratch
• Termination condition: The system is run for N

generations and the best (or best k) solution is
reported

• Operators: mutation, crossover, copy
• Operator application probabilities: crossover: 0% at

generation 1; increase to 95% at generation N;
mutation: 95% at generation 1 is reduced to 0% at
generation N; copy: fixed at 5%

• Population size PS (e.g. 500)

III. GENETIC PARAMETERS AND GENETIC
OPERATORS

A. Population

Population is a combination of chromosomes. In the
program to present the population it uses array of 1002
chromosomes. The thousand and first chromosome stores the
worst tour. The name of the array is population.

public static TChromosome population = new

TChromosome[1001];

For each chromosome it calculates the length that is coded

into it, actually this is the fitness of the tour [2]. It is stored in
the next array:

1Milena N. Karova is with the Department of Computer Science
and Technologies, Technical University Varna, Studentska str. 1,
9010 Varna, Bulgaria, E-mail: mkarova@ieee.bg

2Julka P.Petkova is with the Department of Computer Science and
Technologies, Technical University Varna, Studentska str. 1 9010
Varna, E-mail: jppet@mbox.digsys.bg

3Stoyan P. Penev is with the Department of Computer Science and
Technologies, Technical University Varna, Studentska str. 1, 9010
Varna, Bulgaria, E-mail: penev@engineer.bg

849

Web Application of Traveling Salesman Problem using Genetic Algorithms

public static double[] popFitness=new double[1001];

Now it knows that the tour with index i has a fitness

popFitness[i].
The maximum number of towns is 32. The current number

is stored in the variable townCount. In the same way the
number of populations – popCount. In the process of
mutation, it uses the coefficient MutInd.

B. Genetic Operators for Recombination

Two of the main problems that occur ware choosing proper
methods of crossover and mutation. It has implemented two
types of crossover – cycle crossover and a custom one [8].
The user can choose which one to use in the calculation. Let
us take a closer look at the Cycle crossover.

First of all it fits perfectly to the way our tour is represented
in the chromosome. For example if our tour is

Tour = 1234

This means that it goes from city 1 to city 2 to city 3 to city

4.Unlike other methods of crossover here it does not pick a
crossover point at all. It chooses the first gene from one of the
parent chromosome. If our parents are

parent1 = 12345678
parent2 = 85213647

say it picks 1 from parent 1,

child = 1*******

It must pick every element from one of the parents and

place it in the position it was previously in. Since the first
position is occupied by 1, the number 8 from parent2 cannot
go there. So it must now pick the 8 from parent1.

child = 1*******8

This forces us to put the 7 in position 7 and 4 in position 4,

as in parent1.

child = 1**4**78

Since the same set of position is occupied by 1,4,7,8 in

parent1 and parent2, it finishes by filling in the blank
positions with the elements of those positions in v2. Thus

child 1 = 15243678

and it get child2 from the complement of child1.
This type of crossover ensures that each new created

chromosome is legal. A chromosome is legal if it is
constructed according to the requirements of the salesman
problem. In this crossover notice that it is possible for us to
end up with the offspring being the same as the parents. This

is not a problem since it will usually occur if parents have
high fitness, in which case, it could still be a good chance.

In the program it uses function TestCrossOver:

Public static TChromosome TestCrossOver (int indPar1,

int indPar20);

where indPar1 and indPar2 are the parent’s chromosomes.
If it want to solve this problem or other like not getting

trapped in a local optimum we could use mutation. Due to the
randomness of the process it will occasionally have
chromosomes near a local optimum but none near the global
optimum. Therefore the chromosomes near the local optimum
will be chosen to crossover because they will have the better
fitness and there will be very little chance of hiding the global
optimum. So mutation is a completely random way of getting
to possible solutions that would otherwise not be found.

Mutation is performed after crossover. In presented
algorithm, there are 3 kinds of mutation: transposition,
inversion and changing city’s position. The mutation index
(MutInd) must decide weather to perform mutation on this
child chromosome or not. It then chooses a point to mutate
and switch that point. For instance, in our example it had

child = 12345678

If we choose the mutation point to be gene three and 7, the

child would become

child = 12745638

It simply switched the places of genes 3 and 7. Another

mutation that takes place is inverting a subtour in our child
chromosome. Let us have the chromosome

child = 12345678

and choose the same mutation points 3 and 7.The subtour

between these tow point is switched in reverse order

child = 12765438

After the mutation process the program makes a strict

verification of the chromosome. If it is not legal then the
chromosome is ignored.

In the program it uses function Mutate:

Public static TChromosome Mutate (TChromosome ch);

The idea of the traveling salesman problem is to find a tour

of a given number of cities, visiting each city once and
returning to the starting city where the length of this tour is
minimized.

C. Fitness Function

The Purpose of the fitness function is to decide if a
chromosome is good how good it is [4]. In the traveling
salesman problem the criteria for good chromosome is it’s

850

Milena N. Karova, Julka Petkova and Stoyan P. Penev

length. The longer the tour that is coded, the better the
chromosome is. Calculation takes place during the creation of
the chromosomes. Each chromosome is created and then its
fitness function is calculated. The length of the chromosome
is measured in pixels by the scheme of the tour.

∑
=

=
towncount

i
itchromosomefitness

1
_ ’

where towncount is the number of cities in population, et ti
is the distance between two cities.

D. Basic Functions used in this application

In this product were used 10 basic functions and procedures
in order to create a completely working program:

-DrawCity -ShowCities -DrawChromosome
-GenerateTownSet -CreateTown -GetClick
-Mutate -ClenUp -Sort
-CreatePopulation -TestCrossOver

IV. INTERFACE AND TEST RESULTS

The interface [Fig.1] is Web application, showing the
current result at the moment they are calculated (the best and
the worst chromosome). This screen offers determining cities,
population, stop criteria (iteration number), crossover mode,
mutation mode and mutation rate (coefficient of mutation). In
this order tone of the stop criteria is that the user can terminate
the calculations if he finds a feasible solution. The screen
[Fig.2] shows the worst chromosome and the Fig. 3 – the best
solution that is the chromosome with the smallest distance
between cities.

Fig. 1. The main page

Fig. 4 shows that algorithm needs the minimum iterations
to obtain optimal solution (minimized cutie’s tour) using
mutation rate 3,5%.

Fig. 2. The worst chromosome

The algorithm finds a good solution when there are 30
cities, when the coefficients of inversion and transposition
have lower values. When there are less cities, coefficient’s
influence is smaller. When the distance between cities is
constant, the dependences are the same [Fig.5, Fig.6].

Fig. 3. The Best chromosome

Fig.4 Coefficient of Mutation

851

Web Application of Traveling Salesman Problem using Genetic Algorithms

Fig. 5 Inversion/ Transposition

Fig. 6. Mutation Coefficients in time

V. CONCLUSION

Genetic algorithms appear to find good solutions for the
traveling salesman problem, however it depends very much on
the way the problem is encoded and which crossover and
mutation methods are used. It seems that the methods that use
heuristic information or encode the edges of the tour perform
the best and give good indications for future work in this area.

Overall, it seems that genetic algorithms have proved
suitable for solving the traveling salesman problem. As yet,
genetic algorithms have not found a better solution to the
traveling salesman problem that is already known, but many
of the already known best solutions have been found by some
genetic algorithm methods also.

It seems that the biggest problem with the genetic algorithm
devised for the traveling salesman problem is that it is
difficult to maintain structure from the parent chromosomes
and still end up with a legal tour in the child chromosomes.
Perhaps a better crossover or mutation routine that retains
structure from the parent chromosomes would give a better
solution that we have already found for some traveling
salesman problems.

REFERENCES

[1] Goldberg D, "Web Courses", http://www.engr.uiuc.edu/OCEE,
2000.

[2] Engebretsen L., Karpinski M. Approximation hardness of TSP
with bounded metrics, Proceedengs of 28th ICALP, LNCS
2076, Springer 2001

[3] Mitchell M., "An Introduction to Genetic Algorithms",
Massachusetts Institute of Technology, 1996

[4] http://students.ceid.upatras.gr/~papagel/project/tspprobl.htm
[5] http://www.personal.kent.edu/~rmuhamma/Algorithms/AproxA

lgor/TSP/tsp.htm
[6] http://home.planet.nl/~onno.waalewijn/tspx.html

852

