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A Quickened Genetic Nonlinear  
Reconstruction Algorithm for EIT 

Vassil Guliashki1 

Abstract – This paper presents a quickened hybrid genetic 
algorithm for the inverse nonlinear problem of Electrical 
Impedance Tomography (EIT) in 2D domain. It belongs to the 
interior algorithms. Finite Element Method is used to solve the 
forward EIT problem regarding the nodal scalar potentials and 
current density values. The variational approach is applied to 
solve the inverse problem.  
 

Keywords – Electrical Impedance Tomography, Genetic 
algorithms, Finite element method, Variational approach.  

I. INTRODUCTION 

The Electrical Impedance Tomography (EIT) is a 
technique, proposed for non-destructive testing of materials, 
geophysical applications such as core sample analysis and 
investigations of the Earth contamination, as well as for 
biomedical purposes like making a diagnosis for breast 
cancer, investigation of chest organs and cerebral 
haemorrhaging (brain stroke). Algorithms for detection of 
flaws in materials are presented in [6,7,8,15,16]. The system, 
proposed in [8,16] permits geographically distributed research 
with remote measurement and data acquisition for eddy 
current test signals. In EIT technique low-frequency voltages, 
obtained as a result of injected currents in an inhomogeneous 
object, are measured by means of electrodes on its boundary. 
Then the interior electrical conductivity of the object is 
calculated. At the end EIT gets an image of the electric field 
inside the studied object, based on the conductivity 
distribution in it. Usually, the reconstruction of an EIT image 
consists of two parts: 1) The forward problem – where the 
scalar potentials (voltages), as well as the current density 
values inside the object are calculated, given an approximate 
conductivity distribution, boundary voltages and currents for a 
known geometry of the studied volume; 2) The inverse 
problem – where an adequate estimation of the conductivity 
distribution, based on the calculated (known) scalar potentials 
and current density values is received. The second is a 
nonlinear ill-posed problem (see [22]). Its feasible domain has 
valleys and/or plateaus (regions, where the objective function 
is almost flat). 

The computational complexity of the exact methods for 
such a problem grows exponentially with the number of the 
unknown parameters, which – in EIT-problem – depends on 
the mesh chosen in Finite Element Method (FEM). The image 
quality is better when finer mesh is used, i.e. with more 
unknown parameters. To overcome the shortcomings of the 
exact methods many efficient approximate evolutionary 

algorithms, metaheuristic and hybrid methods have been 
created to find out quickly the global optimum of complex 
optimization problems.  

A new hybrid genetic algorithm, solving the inverse EIT 
problem is proposed in this article.  

II. FORMULATION OF THE PROBLEM 

A. Experimental setup of the problem in 2D case 
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             Fig. 1. Experimental setup for the EIT problem  
 
The illustration of the experimental setup for the EIT 

problem is presented on Fig. 1. To perform measurements on 
the boundary of the studied 2D object 16 electrodes are used. 
The object is considered as an inhomogeneous, conducting 
body having a known overall shape Ω. For simplicity here is 
chosen the domain Ω to be a circle. It is divided by an 
uniform triangularization into 256 triangles (cells). This mesh 
is assumed to be fine enough, so that the FEM numerical 
calculations are sufficiently accurate. Direct currents i1 (input 
current) and i2 (output current) are applied to the body. The 
injected current between these two electrodes has value 10 
mA. The potentials (voltages) are measured between pairs of 
the other electrodes, where one of the electrodes in each pair 
is the grounded electrode. Usually the voltage at the injection 
electrodes cannot be measured reliably and for this reason it is 
not included in the data set. The measured voltages have 
values about 1 V. Each electrode can be held to be equi-
potential and the contact impedance is neglected. In this case 
the current field J(x) and the electric field E(x) are constrained 
by the Kirchhoff’s laws: 

 
∇⋅ J (x)  =  0            (1) 
∇ × E(x) =  0            (2) 
 

and by the Ohm’s law 
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where σ(x) is the conductivity and J(x) is the current density. 
The body is assumed to be locally isotropic, so that σ(x) is a 
positive real number.  

Since ∇ × E  =  0,  E has the form  
 

E(x)  =  –∇Φ(x),            (4) 
where  Φ(x)  is the scalar potential (the voltage). The 
equations (1)-(4) are equivalent to the single elliptic equation 
for  Φ(x): 

∇⋅ ( σ(x)∇Φ(x) ) = 0 in Ω.           (5) 
 
B. Boundary data and feasibility constraints 

 
The experimental setup consists in injecting a measured 

current between two electrodes and measurement the voltage 
between pairs of other electrodes located on the boundary of 
the body. This procedure is repeated N times (N is the number 
of electrodes) clockwise, injecting current between all 
possible adjacent pairs of electrodes. For the setup on Fig. 1 
we have N = 16. In case σ(x) is known, Φ(x) and J(x) are 
completely determined either by the boundary voltage Φ |∂Ω , 
or by the boundary current flux J.n |∂Ω, where n(x) is the unit 
outward normal to the boundary of the body  ∂Ω.  

For the conductivity problem there are two distinct 
variational principles (see for example [1, 9]): the Dirichlet’s 
principle: 

Min ∫Ω Φ∇ dxxx 2|)(|)(σ  ≥ P,           (6) 

where P is the power dissipated into heat (the measured 
power) in the true conductivity medium Ω, and its dual – the 
Thompson’s variational principle, which takes the form: 

∫Ω
− dxxJx 21 |)(|)(σ  ≥ P.           (7) 

These two constraints allow us to obtain upper and lower 
bounds on the feasible domain of the space that contains the 
solution to the inverse problem (for details see [1, 2]). 

 
C. Formulation of the direct problem 
 

The direct EIT problem is decomposed as two quadratic 
optimization problems: The first one has the form:  

Min ∫Ω Φ∇ dxxx 2|)(|)(σ ,           (8) 

subject to:  
Φ(x) = V(x),  for  x ∈ ∂Ω,           (9) 

where V(x), x ∈ ∂Ω, are the measured potentials on the 
boundary of the body.  

The second optimization problem has the form: 

Min ∫Ω dxxJ
x

2|)(|
)(

1
σ

,         (10) 

subject to:  
–J(x).n(x) = I(x), for x ∈ ∂Ω,        (11) 

∫ Ω∂ dxxI )( = 0,          (12)  

∇⋅ J(x)  =  0,  for  x ∈ Ω,         (13) 
where I(x) are the currents on the boundary ∂Ω and n(x) is the 
unit outward normal to the boundary ∂Ω.  

The power dissipated into heat in Ω is: 

P = ∫ Ω∂ dxxVxI )()( .         (14) 

The current density J(x) can be expressed by means of the 
electric vector potential T(x) (see [22]):  

J(x) =  ∇ × T(x).          (15) 
Hence the second optimization problem can be written in 

the form: 

Min ∫Ω ×∇ dxxT
x

2|)(|
)(

1
σ

,        (16) 

subject to:  
–(∇ × T (x)).n(x) = I(x), for x ∈ ∂Ω,       (17) 

∫ Ω∂ dxxI )( = 0,          (18) 

Starting with initial approximate values for σ(x), x ∈ Ω, 
we solve the optimization problems (8)-(9) and (16)-(18) by 
means of the Finite Element Method (see for example [18, 
21]) and calculate Φ(x), T(x) and J(x), x ∈ Ω.  
 
D. Formulation of the inverse problem. A  variational 
approach  
 

The variational approach described in [12, 13] has been 
adopted here. Using data from N different measurements each 
time with different current injection pair of electrodes we 
solve N times the quadratic optimization problems (8)-(9) and 
(16)-(18). The essence of variational approach is to consider 
the linear equations (1) and (4) as constraints and to minimize 
the violation of nonlinear equation (3).  So we solve the 
inverse EIT problem with unknowns σ(x), x ∈ Ω, minimizing 
the error functional: 

F = ∑ ∫
=

−

Ω
+Φ∇

N

i

dxxJxx ii

1

22/12/1 |)()()(|
2
1 σσ ,        (19) 

subject to: 
Φi(x) = Vi(x),  –Ji(x).n(x) = Ii(x),  ∇⋅ Ji(x) = 0,  i=1,…,N.   (20) 

After expanding the square in (19) we have: 

   F = ∑ ∫
=
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)(
1

2
1
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+

              
 + ])().(∫Ω Φ∇ dxxxJ ii             (21) 

The last term in (21) is irrelevant to the minimization of F 
seeking σ(x), because it is entirely determined by the 
boundary data. Minimization of the first term in (21) 
corresponds to the Dirichlet’s variational principle and the 
minimization of the second term corresponds to the 
Thompson’s variational principle. The expression for σ(x), 
which minimizes F in (21) has the form: 
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III. A QUICKENED GENETIC ALGORITHM FOR THE 
INVERSE NONLINEAR EIT PROBLEM 

From the point of view of mathematical programming 
(either linear or nonlinear) the optimization methods are 
divided into interior and exterior methods, depending on 
whether the iterative steps of the correspondent method are 
made inside or outside the feasible domain (see [3]). For 
example the least square method (see [23]) is an exterior 
method, whereas the Kohn and Vogelius method ([13]) is an 
interior method. Solving the EIT inverse problem both types 
of methods attempt to converge to a solution on the boundary 
of the feasible domain, but the exterior methods converge 
from outside the feasible domain, while the interior methods 
converge from inside the feasible domain. In [1] is pointed out 
that the exterior methods can achieve convergence quickly for 
data without errors. The interior methods have the advantage 
to be insensitive to data errors and perform stable, but they are 
often slowly converging.  

The hybrid genetic algorithm proposed here belongs to the 
interior algorithms. To reconstruct the electrical field image 
we solve the problem: 

Min G=∑ ∫
=

Ω
Φ∇

N

i

dxxx i

1

2|)(|)([ σ + ]
)(

1 2|)(|∫Ω dxxJi
xσ

 (23) 

subject to the constraints (20).  
ADI method (see [12]) performs iteratively the following 

procedure: 
1) Using the last computed σ(x) and the measured voltages, 
minimize (8) and (10) over Φi(x) and Ji(x) for  i = 1,…,N. 
2) Using the obtained Φi(x) and Ji(x) minimize G from (23) 
over σ(x), and update σ(x) according to (22). 
The authors pointed out that ADI method performs stable 

but very slowly. More rapid convergence is achieved by 
means of a modified Newton (MN) method (see [12]). 

There are known several successful attempts applying a 
genetic or an evolution hybrid algorithm to solve this ill-posed 
problem (see for example [10, 11, 14, 17, 20]. In [10] a 
genetic algorithm is combined with the Davidon-Fletcher-
Powell method (see [4]) and with Pareto-optimization. In [11] 
a genetic algorithm is coupled with Newton-Raphson method 
and mesh-grouping. In both these cases very encouraging 
results are obtained. Theory of simple genetic algorithms is 
given in [5]. 

The proposed hybrid genetic algorithm is designed to solve 
the inverse EIT problem (23), (20) overcoming the slowly 
converging of the interior methods and the instability of the 
exterior methods when the  signal/noise ratio is greater than 
1%. The main idea in the new genetic algorithm is to perform 
a given number k of ADI-steps (k ≤ 20), or less than k steps 
until a plateau of solutions is reached and then to continue the 
search by genetic procedure. After each genetic generation an 
acceleration phase is performed to increase the speed of the 
algorithm. Instead of mutation operator the algorithm 
performs a special kind of local search after the generations 
have finished. 
 
Acceleration phase  
 

During this phase a step is calculated like in the Nelder 
and Mead simplex method (see [19]). The members 
(solutions) in the current population are ordered in increasing 
order of their G-values. The weight center σc of the group of 
first five members  is calculated. Let the last five members 
with the worst G-values be denoted by σwi , i=1,2,…5; Each 
σwi is reflected towards σc making a step y = σc - σwi to create 
a new solution. The constraints σ(x) ≥ 0, (6) and (7) are used 
to reduce the length of this step if it is necessary. In case 
someone of the so generated solutions is better than one of the 
current population, the better solution replaces the worse. 
Each successful step leading to better solution is repeated 
again and again, taking into account (6), (7) and σ(x) ≥ 0, until 
the G-value cannot be improved anymore. 

 
Special kind of local search 
 

As mentioned in [14] the conductivity distribution is 
piecewise constant for lots of biomedical subjects like in head 
or in chest of the human body. For this reason we can use a 
model having D parts with constant conductivity. In the best 
solution some conductivities are greater and some smaller 
than the mean conductivity. The local search proposed 
consists of following operations: 

1. Choose the cell with the greatest conductivity σg and 
try to increase it by δ to σg + δ, where δ is a small 
positive number. In case the G-value is decreased 
repeat this operation.  

2. Performed analog operation with the smallest 
conductivity σs, which should be decreased by δ to σs 
- δ until the G-value decreases.  

3. For the cell with  σg  try to replace the conductivity 
of each its neighboring cell by σg and evaluate the G-
value. The conductivity values are replaced in this 
way until the G-value improves.  

4. Perform the operation of 3. by σs in the 
neighborhood of cell with σs. 

 
“Pseudo-code” form of the quickened genetic algorithm  
 

Generate an initial population P0 with size s = 5D 
members, where D is the supposed number of regions in Ω 
having constant conductivity; Set i := 0; (iteration counter); 

Evaluate the members in Pi; 
Starting from the best member solution (with 

minimal value of G) perform k, or less than k, ADI steps until 
no more improvement is reached. 
While no stopping criteria are met do 
          Set i := i+1; 
          For  j=1, s; do 

   Select  two members I1 and I2 by means of „Roulette 
   wheel selection“ in Pi–1;      
   Apply one-point crossover operator to I1 and I2 for  
   creating offspring O1 and O2; 
    Decide whether or not O1 and O2 should enter Pi to  
    replace older (worse) members; 
EndFor 
Create the population Pi from Pi–1, replacing the worst  
members in Pi–1 with the best generated children  
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solutions;  Perform the acceleration phase. 
EndWhile 

Perform a special kind of local search around the best 
found solution σ (x)*. 

The algorithm stops when the error functional value G 
becomes smaller than the prescribed value or when the 
iteration limit is reached. 

IV. CONCLUSION 

The proposed hybrid genetic algorithm makes an attempt 
to combine the good features of genetic algorithms and of 
interior methods in order to perform stable and robust search 
when the data are contaminated with great noise. The new 
algorithm combines the simple genetic procedure with steps 
of the ADI method, accelerating steps and a special kind of 
local search around the best obtained solution. We expect that 
the new algorithm may need only a few genetic generations to 
find the global optimal solution. A program on MATLAB has 
been created and will be tested on a number of test examples. 
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