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Abstract - The goal of the paper is to investigate the scalability 
and compare the performance parameters of solving 
optimization and constraint satisfaction problems using parallel 
genetic algorithms based on independent island evolution of local 
subpopulations and best chromosomes migration in a ring 
topology for evolutionary based solution of three selected 
combinatorial optimization problems. 
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I. INTRODUCTION 

An optimization problem is the problem of finding the best 
solution from all feasible solutions. An optimization problem 
consists in finding the best solution in a large set of feasible 
solution, where the quality of each solution is evaluated using 
an objective function [1, 2]. Many optimization problems are 
NP-hard that is an efficient (i.e. polynomial time) algorithm 
for their solution may not exist [3]. In such cases it is worth 
looking for algorithms that find approximate solution whose 
measure is not too far from the optimum. 

Evolutionary algorithms (EAs) are search methods that 
take their inspiration from natural selection and survival of the 
fittest individuals in the biological world [4]. Several different 
types of evolutionary based search methods are developed 
including genetic programming, evolutionary programming, 
evolutionary strategies and genetic algorithms. 

Genetic algorithms (GAs) are computational approaches 
for solving a variety of optimization problems [5-7]. GAs are 
search procedures based on the ideas of evolutionary 
processes in the biological individuals. They randomly create 
an initial population of individuals and then use genetic 
operators for selection, crossover and mutation to yield new 
offspring. GAs are successfully applied in solving 
optimization and constraint satisfaction problems.  

Parallel genetic algorithms (PGAs) can be conveniently 
implemented on parallel and distributed systems. Each 
processor performs the genetic operations independently on an 
isolated subpopulation of the individuals periodically sharing 
its best individuals with the other processors through 
migration [8, 9]. 

The goal of the paper is to investigate the scalability and 
compare the performance parameters of solving optimization 
and constraint satisfaction problems using PGA. A parallel 
programming model is suggested for evolutionary based 
solution of three selected combinatorial optimization 
problems: the traveling salesman problem, the knapsack 
problem and the n-queens problem. The PGA model utilizes 
independent island evolution of local subpopulations and best 
chromosomes migration in a ring topology. The performance 
of the problem solutions is evaluated and compared based on 
flat (MPI) and hybrid (MPI+OpenMP) implementations of the 
models. Profiling and scalability analysis are also performed. 

II. EVOLUTIONARY COMPUTATIONS OF 
COMBINATORIAL OPTIMIZATION PROBLEMS 

Several methods and parameters have to be specified when 
solving given problem by evolutionary algorithms:  
- the size of the chromosome pool at the start of each 
successive generation and the number of generations that will 
be evolved; 
- the selection method that attempts stochastically to select 
individuals from one generation to create the basis of the next 
generation providing that the fittest individuals will have a 
greater chance of survival than weaker ones; 
- the crossover method that will allow the offspring to carry 
forward the important genetic material of the parents, whilst 
introducing enough variation to become potentially more 
fitter; 
- the mutation occurrence strategy that is seen as an 
unanticipated change in a chromosome pattern of some of the 
individuals resulting occasionally in a much weakened or 
much stronger individual. 

The selected case studies to be solved by evolutionary 
approach are two optimization problems: the traveling 
salesman problem and the knapsack problem, and one 
combinatorial constraint satisfaction problem: the N-queens 
problem. 

The traveling salesman problem (TSP) is an NP-hard 
combinatorial problem that requires finding the shortest tour 
of a group of cities without visiting any town twice. The TSP 
may be presented mathematically as finding the Hamiltonian 
cycle of minimal weight within a weighted fully connected 
undirected graph G = (V, E) where the vertices present the 
cities, the edges denote the intercity paths and the weights of 
the edges represent the intercity distances. The deterministic 
method to solve the TSP problem involves traversing all 
possible routes, evaluating corresponding tour distances and 
finding out the tour of minimal distance. The total number of 
possible routes traversing n cities is n! therefore in cases of 
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large values of n it becomes impossible to find the cost of all 
tours in polynomial time.  

TSP can be solved using genetic approach by representing 
each tour as a chromosome that is the sequence of visiting the 
towns by the salesman [10]. In our case permutation encoding 
is used where every chromosome is a string of numbers that 
represent a position in a sequence. For the chromosomes 
permutation coding is used which is the best method for 
coding ordering problems. The fitness represents the length of 
the tour. The selection is performed following the rules of the 
roulette wheel method – the individuals of the highest fitness 
are selected for parents. The method of recombination is that 
of one crossover point – one part of the first parent and other 
part of the second parents is taken with special care not to 
repeat a city in the tour. The mutation applied is of the normal 
random type and involves changing of the city order.  

The knapsack problem is one of the classical optimization 
problems recognized to be NP-hard. It arises whenever there 
is resource allocation with some constraints. The problem can 
be stated as follows: given a set of items each having certain 
cost and value, to determine the items that total cost does not 
exceed some given cost and the total value is as large as 
possible. Let the knapsack capacity is denoted as c > 0 and 
there are N classes of items. The number of items in each class 
is unlimited. Each item in given class has a value vi > 0 and a 
weight wi > 0. All classes have different values and weights. 
The goal is to find the most valuable set of items that fit in a 
knapsack of the fixed capacity: 
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ii vVcw δδ    ,  (1) 

where δi = 1 when the ith item is selected, 0 otherwise and V is 
the total value have to be maximized. 

There are different variations of the knapsack problem but 
the typical formulation in practice is the 0/1 knapsack 
problem, where each item must be put entirely in the knapsack 
or not included at all. This 0/1 property makes the knapsack 
problem hard for a simple greedy algorithm to find the 
optimal selection. There are two main approaches for solving 
this problem: branch and bound and dynamic programming. If 
N is the total number of classes then 2N subsets of the item 
collection should be evaluated in order to find the optimal 
solution using the brute-force approach. An exhaustive search 
for a solution to the knapsack problem generally takes 
exponential running time and therefore is infeasible. Some 
dynamic programming techniques also have exponential 
running time although have proven useful in practice.  

The chromosomes in the case of solving the knapsack 
problem with GA [11-13] will have a length equal to the 
number of the classes of items to be put in the knapsack. 
Binary chromosomes will be utilized that is value 1 in given 
position will means the item will be selected and value 0 
means the item will not be selected for the subset of the items 
in the knapsack. The fitness of each chromosome is the total 
weight оf all items in the knapsack. A population is initially 
randomly created as certain number of possible solutions. The 
selection is based on the roulette wheel approach that is the 
fitness of the chromosomes determine the probability that a 
chromosome is selected to survive in the next generation. 
Crossover uses one point of mixing of two parent solutions in 

order to produce an offspring. Mutation is based random flip 
of a bit in a chromosome that happens with certain 
probability. 

The N-queens problem is a classical combinatorial 
constraint satisfaction problem formulated as solving the task 
to place N queens on a N×N chessboard in such a way that no 
queens attack each other. The difficulty of the N-queens 
problem arises from the fact that the search space of possible 
solutions is an incredibly large even for small values of N. 
The complexity of the N-queens problem is estimated as 
О(N!) and the problem belong to the class of NP-complete 
problems requiring a brute-force algorithm to guarantee that 
the solution can be found for any value of N. The basic classes 
of strategy for solving the N-queens problem are systematic 
search strategies and repair strategies. A depth-first search 
backtracking algorithm can solve the N-queens problem in 
reasonable time but only for small values of N.  

In the case of solving N-queens problem by GA [14-16] 
initial population will comprises randomly generated 
placements of the queens on the board represented as 
permutations of an N-tuple (1, 2, 3, …, N). A chromosome i 
shows the column where the queen in row i is placed. The 
fitness of each individual measures how close it is to the 
problem solution. Since a solution to the N-queens problem 
requires no queens to attack each other the fitness is 
calculated as the number of conflicts between queens. The 
individuals in the population are evaluated and sorted 
according to their fitness. A crossover process creates new 
individuals combining two parents. Mutation involves a 
random change of an individual and is implemented as 
exchange of the positions of two queens. Genetic algorithm 
finishes the search either if a solution of the queens placement 
on the board is found or a predefined number of iterations is 
accomplished. 

III. PARALLEL COMPUTATIONAL MODEL OF GA FOR 
COMBINATORIAL OPTIMIZATION PROBLEMS 

All targeted combinatorial problems can be solved using 
the suggested parallel computational model (fig.1). The model 
utilizes parallelization method that divides the population into 
some number of demes (subpopulations) that are separated 
and evolve independently on each of the processors of the 
multicomputer platform. The parallel computational model 
utilizes a parallel algorithmic paradigm “synchronous 
iterations”. Each process evolves a subpopulation performing 
the genetic operations selection, crossover and mutation. 
Iterations of independent genetic evolution on each of the 
processes for certain number of generations are followed by a 
communication stage for migration of the best solutions found 
so far between the processes. The processes are organized in a 
logical ring and each process sends its local best individuals to 
one of its neighbors while receiving migrants from its other 
neighbor process. The migrants are compared with the local 
subpopulation and the local worst solutions according to their 
fitness are replaced. Thus each process will check for 
incoming data from its neighbor process while evolving its 
subpopulation and when the data are received will utilize them 
replacing its worst chromosomes. 
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Fig.1. Parallel computational model for PGA for solving combinatorial optimization problems

Each process performs the following tasks:  
- randomly generates a population of predefined size and 
evolves it certain generations; 
- packs the best local chromosomes and sends them 
(MPI_Send) to one of its neighbors in the logical ring, i.e. the 
process with rank I+1 (the last process send migrants to the 
first one); 
- checks for an incoming message (with MPI_Iprobe) from its 
other neighbor, i.e. the process with rank I-1, with a message 
tag MPI_MIGRATION (the first process receives migrants 
from the last one) and receives the data (MPI_Recv) to 
perform migration replacements. 

The main difference in the utilization of the suggested 
computational model for the targeted problems is the GA 
termination criteria. For the optimization problems (TSP and 
knapsack) the evolutionary operations terminate after certain 
number of generations are evolved and the best solution is 
determined by a global reduction operation on the local 
optimal solutions. Due to the diversification introduced by the 
independent parallel evolutions the more parallel processes 
are employed the less number of iterations of local evolution 
will be accomplished. When solving the constrain satisfaction 
combinatorial problem of N-queens GA terminates when a 
solution is found. For this reason additional communications 
are required for sending termination message to all process 
when any of them founds a solution. Thus each process 
performs the following additional operations: 
- checks for incoming message (with MPI_Iprobe) from any 
other process (MPI_ANY_SOURCE) with message tag 
MPI_STOP and if such message have been received 
terminates itself; 
- if solution is found in the local population sends a message 
to all other processes with a termination tag MPI_STOP. 

A parallel genetic algorithm library is developed in order 
to allow the implementation of the above described parallel 
programming model for solving the selected combinatorial 
problems based on evolutionary computations. The library 
consists of data structures, classes and functions required for 
implementation of the genetic operators for selection, 
crossover, mutation and migration.  

Certain data structure comprising the data to be transferred 
during the migration of chromosomes between the 
subpopulations is used in order to speed up the 
communication transactions. 

IV. EXPERIMENTAL FRAMEWORK AND GENETIC 
PARAMETERS 

The genetic parameters used in the experimental 
evaluation of the performance of PGA for solving the selected 
combinatorial problems are given in Table I. The population 
size depends on the problem size, the subpopulation size 
depends on population size and the number of processors and 
the number of migrants depends on the population size (4% 
from the population size). 

 
TABLE I. GENETIC PARAMETERS 

 
We have estimated the parallel system performance 

experimentally for different workload in order to evaluate the 
scalability in respect to the complexity of the solved problem. 
For the TSP the number of cities used in the experiments is 
100, 200, 300, 400, 500 and 600. The experiments for solving 
knapsack problem with PGA are made for three different 
cases of 100, 250 and 500 classes of items that have to be 
collected in a knapsack of capacity 1000. The PGA for 
solving N-queens problem is tested at several different 
workloads: board size of 12, 14, 16 and 17 elements. 

The experimental multicomputer platform consists of 10 
workstations (Intel Pentium 4, 3.2GHz, 1G RAM, Hyper-
Threading) connected via Fast Ethernet Switch (100 Mbps). 
The parallel genetic algorithm library is implemented in C++ 
using Microsoft Visual Studio 2005, MPICH-2 and OpenMP.  

The machine size varies from 1 to 10 workstations in order 
to explore the scalability of the parallel computer platform in 
respect to the parallel application under investigation. Each 
experiment is repeated 10 times and average values of the 
performance parameters are calculated.  

Parameter Description 
Number of generations 200 

Subpopulation size population size / number of  the 
processors 

Migration topology circular 
Migration frequency 20 generations 
Number of migrants 4% from the population 

Mutation rate various mut. rate: 0.01≤μ≤0.2 
incremental step μ+=0.001 
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V. PARALLELISM PROFILING AND PERFORMANCE 
ANALYSIS 

The results for the speedup achieved in solving the 
selected combinatorial problems by evolutionary algorithm 
are shown in Fig.2, Fig.3 and Fig.4 for the TSP, the knapsack 
and the N-queens problem respectively. The results show that 
good speedup values are obtained for both targeted problems. 
The scalability in respect of the size of the parallel platform is 
almost linear. For the optimization problems (TSP and 
knapsack problem) the speedup achieved for 10 processes is 9 
for 600 cities and 8.7 for 500 items. For the N-queens problem 
the speedup is slightly smaller (8.3 with 10 processes) due to 
the different termination condition introducing additional 
communications. The suggested programming model scales 
well also in respect to the workload. The suggested parallel 
computational model introduces very little communication 
overhead during the migration stage. Moreover the utilization 
of asynchronous communications further decreases the time 
spend inter- processor communications. On the other side the 
migration provides better subpopulation diversity and thus 
increases the possibility of finding better solution in less 
number of evolution periods. 
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Fig.2. Speedup achieved for solving TSP by PGA 
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Fig.3. Speedup achieved for solving knapsack problem by PGA 
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Fig.4. Speedup achieved for solving N-queens problem by PGA 

VI. CONCLUSION 

In this paper performance comparison and scalability 
analysis of solving optimization and constraint satisfaction 
problems are made using PGA. The PGA computational 
model is suggested and implemented based on independent 
island evolution and best chromosomes migration in a ring 
topology and is applied for three combinatorial optimization 
problems. The parallel system performance is evaluated 
experimentally for different workload and machine sizes. The 
results show that the model scales well both in respect to the 
parallel computer size and the application workload. 
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