

Performance Comparison of Parallel Genetic Algorithms
for Combinatorial Optimization Problems
Milena K. Lazarova1, Plamenka I. Borovska2, Shada A. Mabgar3

Abstract - The goal of the paper is to investigate the scalability
and compare the performance parameters of solving
optimization and constraint satisfaction problems using parallel
genetic algorithms based on independent island evolution of local
subpopulations and best chromosomes migration in a ring
topology for evolutionary based solution of three selected
combinatorial optimization problems.

Keywords - island parallel genetic model, combinatorial
optimization problems, performance comparison, profiling,
scalability

I. INTRODUCTION

An optimization problem is the problem of finding the best
solution from all feasible solutions. An optimization problem
consists in finding the best solution in a large set of feasible
solution, where the quality of each solution is evaluated using
an objective function [1, 2]. Many optimization problems are
NP-hard that is an efficient (i.e. polynomial time) algorithm
for their solution may not exist [3]. In such cases it is worth
looking for algorithms that find approximate solution whose
measure is not too far from the optimum.

Evolutionary algorithms (EAs) are search methods that
take their inspiration from natural selection and survival of the
fittest individuals in the biological world [4]. Several different
types of evolutionary based search methods are developed
including genetic programming, evolutionary programming,
evolutionary strategies and genetic algorithms.

Genetic algorithms (GAs) are computational approaches
for solving a variety of optimization problems [5-7]. GAs are
search procedures based on the ideas of evolutionary
processes in the biological individuals. They randomly create
an initial population of individuals and then use genetic
operators for selection, crossover and mutation to yield new
offspring. GAs are successfully applied in solving
optimization and constraint satisfaction problems.

Parallel genetic algorithms (PGAs) can be conveniently
implemented on parallel and distributed systems. Each
processor performs the genetic operations independently on an
isolated subpopulation of the individuals periodically sharing
its best individuals with the other processors through
migration [8, 9].

The goal of the paper is to investigate the scalability and
compare the performance parameters of solving optimization
and constraint satisfaction problems using PGA. A parallel
programming model is suggested for evolutionary based
solution of three selected combinatorial optimization
problems: the traveling salesman problem, the knapsack
problem and the n-queens problem. The PGA model utilizes
independent island evolution of local subpopulations and best
chromosomes migration in a ring topology. The performance
of the problem solutions is evaluated and compared based on
flat (MPI) and hybrid (MPI+OpenMP) implementations of the
models. Profiling and scalability analysis are also performed.

II. EVOLUTIONARY COMPUTATIONS OF
COMBINATORIAL OPTIMIZATION PROBLEMS

Several methods and parameters have to be specified when
solving given problem by evolutionary algorithms:
- the size of the chromosome pool at the start of each
successive generation and the number of generations that will
be evolved;
- the selection method that attempts stochastically to select
individuals from one generation to create the basis of the next
generation providing that the fittest individuals will have a
greater chance of survival than weaker ones;
- the crossover method that will allow the offspring to carry
forward the important genetic material of the parents, whilst
introducing enough variation to become potentially more
fitter;
- the mutation occurrence strategy that is seen as an
unanticipated change in a chromosome pattern of some of the
individuals resulting occasionally in a much weakened or
much stronger individual.

The selected case studies to be solved by evolutionary
approach are two optimization problems: the traveling
salesman problem and the knapsack problem, and one
combinatorial constraint satisfaction problem: the N-queens
problem.

The traveling salesman problem (TSP) is an NP-hard
combinatorial problem that requires finding the shortest tour
of a group of cities without visiting any town twice. The TSP
may be presented mathematically as finding the Hamiltonian
cycle of minimal weight within a weighted fully connected
undirected graph G = (V, E) where the vertices present the
cities, the edges denote the intercity paths and the weights of
the edges represent the intercity distances. The deterministic
method to solve the TSP problem involves traversing all
possible routes, evaluating corresponding tour distances and
finding out the tour of minimal distance. The total number of
possible routes traversing n cities is n! therefore in cases of

1Milena Lazarova is with the Faculty of Computer Systems
and Control, Department of Computer Systems, 8 Kliment
Ochridsky str., 1756 Sofia, Bulgaria, E-mail: milaz@tu-sofia.bg

2Plamenka Borovska is with the Faculty of Computer Systems
and Control, Department of Computer Systems, 8 Kliment
Ochridsky str., 1756 Sofia, Bulgaria, E-mail: pborovska@tu-
sofia.bg

3Shada Mabgar is a Ph.D. student at the Faculty of Computer
Systems and Control, Department of Computer Systems, 8
Kliment Ochridsky str., 1756 Sofia, Bulgaria

437

large values of n it becomes impossible to find the cost of all
tours in polynomial time.

TSP can be solved using genetic approach by representing
each tour as a chromosome that is the sequence of visiting the
towns by the salesman [10]. In our case permutation encoding
is used where every chromosome is a string of numbers that
represent a position in a sequence. For the chromosomes
permutation coding is used which is the best method for
coding ordering problems. The fitness represents the length of
the tour. The selection is performed following the rules of the
roulette wheel method – the individuals of the highest fitness
are selected for parents. The method of recombination is that
of one crossover point – one part of the first parent and other
part of the second parents is taken with special care not to
repeat a city in the tour. The mutation applied is of the normal
random type and involves changing of the city order.

The knapsack problem is one of the classical optimization
problems recognized to be NP-hard. It arises whenever there
is resource allocation with some constraints. The problem can
be stated as follows: given a set of items each having certain
cost and value, to determine the items that total cost does not
exceed some given cost and the total value is as large as
possible. Let the knapsack capacity is denoted as c > 0 and
there are N classes of items. The number of items in each class
is unlimited. Each item in given class has a value vi > 0 and a
weight wi > 0. All classes have different values and weights.
The goal is to find the most valuable set of items that fit in a
knapsack of the fixed capacity:

∑∑ =≤
i

ii
i

ii vVcw δδ , (1)

where δi = 1 when the ith item is selected, 0 otherwise and V is
the total value have to be maximized.

There are different variations of the knapsack problem but
the typical formulation in practice is the 0/1 knapsack
problem, where each item must be put entirely in the knapsack
or not included at all. This 0/1 property makes the knapsack
problem hard for a simple greedy algorithm to find the
optimal selection. There are two main approaches for solving
this problem: branch and bound and dynamic programming. If
N is the total number of classes then 2N subsets of the item
collection should be evaluated in order to find the optimal
solution using the brute-force approach. An exhaustive search
for a solution to the knapsack problem generally takes
exponential running time and therefore is infeasible. Some
dynamic programming techniques also have exponential
running time although have proven useful in practice.

The chromosomes in the case of solving the knapsack
problem with GA [11-13] will have a length equal to the
number of the classes of items to be put in the knapsack.
Binary chromosomes will be utilized that is value 1 in given
position will means the item will be selected and value 0
means the item will not be selected for the subset of the items
in the knapsack. The fitness of each chromosome is the total
weight оf all items in the knapsack. A population is initially
randomly created as certain number of possible solutions. The
selection is based on the roulette wheel approach that is the
fitness of the chromosomes determine the probability that a
chromosome is selected to survive in the next generation.
Crossover uses one point of mixing of two parent solutions in

order to produce an offspring. Mutation is based random flip
of a bit in a chromosome that happens with certain
probability.

The N-queens problem is a classical combinatorial
constraint satisfaction problem formulated as solving the task
to place N queens on a N×N chessboard in such a way that no
queens attack each other. The difficulty of the N-queens
problem arises from the fact that the search space of possible
solutions is an incredibly large even for small values of N.
The complexity of the N-queens problem is estimated as
О(N!) and the problem belong to the class of NP-complete
problems requiring a brute-force algorithm to guarantee that
the solution can be found for any value of N. The basic classes
of strategy for solving the N-queens problem are systematic
search strategies and repair strategies. A depth-first search
backtracking algorithm can solve the N-queens problem in
reasonable time but only for small values of N.

In the case of solving N-queens problem by GA [14-16]
initial population will comprises randomly generated
placements of the queens on the board represented as
permutations of an N-tuple (1, 2, 3, …, N). A chromosome i
shows the column where the queen in row i is placed. The
fitness of each individual measures how close it is to the
problem solution. Since a solution to the N-queens problem
requires no queens to attack each other the fitness is
calculated as the number of conflicts between queens. The
individuals in the population are evaluated and sorted
according to their fitness. A crossover process creates new
individuals combining two parents. Mutation involves a
random change of an individual and is implemented as
exchange of the positions of two queens. Genetic algorithm
finishes the search either if a solution of the queens placement
on the board is found or a predefined number of iterations is
accomplished.

III. PARALLEL COMPUTATIONAL MODEL OF GA FOR
COMBINATORIAL OPTIMIZATION PROBLEMS

All targeted combinatorial problems can be solved using
the suggested parallel computational model (fig.1). The model
utilizes parallelization method that divides the population into
some number of demes (subpopulations) that are separated
and evolve independently on each of the processors of the
multicomputer platform. The parallel computational model
utilizes a parallel algorithmic paradigm “synchronous
iterations”. Each process evolves a subpopulation performing
the genetic operations selection, crossover and mutation.
Iterations of independent genetic evolution on each of the
processes for certain number of generations are followed by a
communication stage for migration of the best solutions found
so far between the processes. The processes are organized in a
logical ring and each process sends its local best individuals to
one of its neighbors while receiving migrants from its other
neighbor process. The migrants are compared with the local
subpopulation and the local worst solutions according to their
fitness are replaced. Thus each process will check for
incoming data from its neighbor process while evolving its
subpopulation and when the data are received will utilize them
replacing its worst chromosomes.

438

Fig.1. Parallel computational model for PGA for solving combinatorial optimization problems

Each process performs the following tasks:
- randomly generates a population of predefined size and
evolves it certain generations;
- packs the best local chromosomes and sends them
(MPI_Send) to one of its neighbors in the logical ring, i.e. the
process with rank I+1 (the last process send migrants to the
first one);
- checks for an incoming message (with MPI_Iprobe) from its
other neighbor, i.e. the process with rank I-1, with a message
tag MPI_MIGRATION (the first process receives migrants
from the last one) and receives the data (MPI_Recv) to
perform migration replacements.

The main difference in the utilization of the suggested
computational model for the targeted problems is the GA
termination criteria. For the optimization problems (TSP and
knapsack) the evolutionary operations terminate after certain
number of generations are evolved and the best solution is
determined by a global reduction operation on the local
optimal solutions. Due to the diversification introduced by the
independent parallel evolutions the more parallel processes
are employed the less number of iterations of local evolution
will be accomplished. When solving the constrain satisfaction
combinatorial problem of N-queens GA terminates when a
solution is found. For this reason additional communications
are required for sending termination message to all process
when any of them founds a solution. Thus each process
performs the following additional operations:
- checks for incoming message (with MPI_Iprobe) from any
other process (MPI_ANY_SOURCE) with message tag
MPI_STOP and if such message have been received
terminates itself;
- if solution is found in the local population sends a message
to all other processes with a termination tag MPI_STOP.

A parallel genetic algorithm library is developed in order
to allow the implementation of the above described parallel
programming model for solving the selected combinatorial
problems based on evolutionary computations. The library
consists of data structures, classes and functions required for
implementation of the genetic operators for selection,
crossover, mutation and migration.

Certain data structure comprising the data to be transferred
during the migration of chromosomes between the
subpopulations is used in order to speed up the
communication transactions.

IV. EXPERIMENTAL FRAMEWORK AND GENETIC
PARAMETERS

The genetic parameters used in the experimental
evaluation of the performance of PGA for solving the selected
combinatorial problems are given in Table I. The population
size depends on the problem size, the subpopulation size
depends on population size and the number of processors and
the number of migrants depends on the population size (4%
from the population size).

TABLE I. GENETIC PARAMETERS

We have estimated the parallel system performance

experimentally for different workload in order to evaluate the
scalability in respect to the complexity of the solved problem.
For the TSP the number of cities used in the experiments is
100, 200, 300, 400, 500 and 600. The experiments for solving
knapsack problem with PGA are made for three different
cases of 100, 250 and 500 classes of items that have to be
collected in a knapsack of capacity 1000. The PGA for
solving N-queens problem is tested at several different
workloads: board size of 12, 14, 16 and 17 elements.

The experimental multicomputer platform consists of 10
workstations (Intel Pentium 4, 3.2GHz, 1G RAM, Hyper-
Threading) connected via Fast Ethernet Switch (100 Mbps).
The parallel genetic algorithm library is implemented in C++
using Microsoft Visual Studio 2005, MPICH-2 and OpenMP.

The machine size varies from 1 to 10 workstations in order
to explore the scalability of the parallel computer platform in
respect to the parallel application under investigation. Each
experiment is repeated 10 times and average values of the
performance parameters are calculated.

Parameter Description
Number of generations 200

Subpopulation size population size / number of the
processors

Migration topology circular
Migration frequency 20 generations
Number of migrants 4% from the population

Mutation rate various mut. rate: 0.01≤μ≤0.2
incremental step μ+=0.001

439

V. PARALLELISM PROFILING AND PERFORMANCE
ANALYSIS

The results for the speedup achieved in solving the
selected combinatorial problems by evolutionary algorithm
are shown in Fig.2, Fig.3 and Fig.4 for the TSP, the knapsack
and the N-queens problem respectively. The results show that
good speedup values are obtained for both targeted problems.
The scalability in respect of the size of the parallel platform is
almost linear. For the optimization problems (TSP and
knapsack problem) the speedup achieved for 10 processes is 9
for 600 cities and 8.7 for 500 items. For the N-queens problem
the speedup is slightly smaller (8.3 with 10 processes) due to
the different termination condition introducing additional
communications. The suggested programming model scales
well also in respect to the workload. The suggested parallel
computational model introduces very little communication
overhead during the migration stage. Moreover the utilization
of asynchronous communications further decreases the time
spend inter- processor communications. On the other side the
migration provides better subpopulation diversity and thus
increases the possibility of finding better solution in less
number of evolution periods.

2
3

4
5

6
7 8 9 10

600 500 400 300 200 100

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Proc.

Cities

PGA for solving TSP

Fig.2. Speedup achieved for solving TSP by PGA

2
3

4
5

6
7

8 9 10

100250
500

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Proc.
Items

PGA for solving knapsack problem

Fig.3. Speedup achieved for solving knapsack problem by PGA

1
2

3
4

5
6

7
8

9

12
14

16
17

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Proc.

Board size

PGA for solving N_queens problem

Fig.4. Speedup achieved for solving N-queens problem by PGA

VI. CONCLUSION

In this paper performance comparison and scalability
analysis of solving optimization and constraint satisfaction
problems are made using PGA. The PGA computational
model is suggested and implemented based on independent
island evolution and best chromosomes migration in a ring
topology and is applied for three combinatorial optimization
problems. The parallel system performance is evaluated
experimentally for different workload and machine sizes. The
results show that the model scales well both in respect to the
parallel computer size and the application workload.

REFERENCES

[1] P. Klein, N. Young, “Approximation algorithms for NP-hard
optimization problems”, Algorithms and Theory of
Computation Handbook, CRC Press, 1999.

[2] P. Crescenzi, V. Kann, A compendium of NP optimization
problems, http://www.nada.kth.se/nada/theory/problemlist.html

[3] G. Ausiello, Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties,
Springer, 1999.

[4] P. Gray, W. Hart, L. Painton, C. Phillips, M. Trahan, J.
Wagner, A Survey of Global Optimization Methods,
http://www.cs.sandia.gov/opt/survey/ main.html

[5] Z. Michalewicz, Genetic Algorithms + Data Stractures =
Evolutioin Programs, Springer, 1996.

[6] A. Eiben, “Evolutionary Algorithms and Constraints
Satisfaction: Definitions, Survey, Methodology, and Research
Directions”, in L. Kallel, B. Naudts, A. Rogers (eds.),
Theoretical Aspects of Evolutionary Computing, Natural
Computing Series, Springer, pp.13÷58, 2001.

[7] C. Reeves, J. Rowe, Genetic Algorithms – Principles and
Perspectives: A Guide to GA Theory, Springer, 2002.

[8] B. Wilkinson, M. Allen, Parallel Programming Techniques
and Applications Using Networked Workstations and Parallel
Computers, Pearson Prentice Hall, 2005.

[9] E. Cantu-Paz, “Migration Policies, Selection Pressure, and
Parallel Evolutionary Algorithms”, Journal of Heuristics,
Vol.7, No.4, 2001, pp. 311÷334.

[10] P. Borovska, “Solving the TSP in Parallel by Genetic
Algorithm on Multicomputer Cluster”, Proc. of the Int. Conf.
on Computer Systems and Technologies, Bulgaria, pp.II-11-
1÷II-11-6, 2006.

[11] S. Khuri, T. Back, J. Heitkotter, “The Zero/One Multiple
Knapsack Problem and Genetic Algorithms”, Proc. of ACM
Symposium on Applied Computing, pp.188÷193, 1994.

[12] A. Anagun, T. Sarac, “Optimization of Performance of Genetic
Algorithm for 0-1 Knapsack Problems Using Taguchi Method”,
Proc. of Int. Conf. on Computational Science and Its
Applications (ICCSA 2006): Workshop on Optimization:
Theories and Applications, 2006, pp.678÷687.

[13] Z. Ezziane, “Solving the 0/1 knapsack problem using an
adaptive genetic algorithm”, Journal Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, Vol.16, №1,
pp 23÷30, 2002.

[14] A. Kilic, M. Kaya, “A New Local Search Algorithm Based on
Genetic Algorithms for the N-Queens Problem”, Proc. of the
Genetic and Evolutionary Computation Conference (GECCO
2001), USA, pp. 2001.

[15] K. Crawford, “Solving the N-Queens problem Using Genetic
Algorithms”, Proc. of ACM/SIGAPP Symposium on Applied
Computing, USA, pp.1039÷1047, 1992

440

