

Efficiency of Parallel Computations for Error
Backpropagation Neural Network Training

Milena K. Lazarova1

Abstract - The paper investigates the efficiency of parallel
computations at the training stage of an error backpropagation
neural network. Flat, multithreaded and hybrid parallel
computational models are suggested. Performance comparison is
made and scalability in respect to the multicomputer size and its
impact on the performance of the parallel system is estimated.

Keywords - parallel computations, message passing, shared
memory, neural network training, error backpropagation

I. INTRODUCTION

Artificial neural network (NN) is an interconnected
assembly of simple processing elements whose functionality
is loosely based on the structure and functioning of the brain
[1]. The processing ability of the NN is stored in the inter-unit
connection strengths (weights) obtained by a process of
adaptation to or learning from a set of training patterns.
Among the basic properties of the NN that distinguishes them
from the von Neuman computer are [2]: massive parallelism,
distributed representation and computation, learning ability,
self-organization, generalization ability, adaptivity, fault
tolerance.

In order to apply a NN for solving particular problem the
network has to be trained to effectively map an input set of
values into an output space defined by the output element
values. The training can be either supervised or self-
organization process but in both cases it requires consecutive
repetition of the adjustment of the values of inter-node
weights. Therefore the NN training usually involves a lot of
computations and is time-consuming. The problem of large
training times can be overcome either by devising faster
learning algorithms or by implementing the existing
algorithms on parallel computing architectures [3, 4]. Shifting
towards parallelization is a natural process of NN due to the
inherent massive parallelism of their biological original: the
brain. Since the computations of the model components are
largely independent of each other most of the NN models
have great potential for parallelism. The larger are the NN
architecture and the training data set the more relevant is the
exploitation of the inherent parallelism of NN.

The approach of NN parallelization depends on the
specifics of the NN architecture and the organization of inter-
node communications but most NN models are rather easily
viable on parallel hardware of all kinds. Parallel architectures
for simulating neural networks can be subdivided into general
purpose parallel computers and neurocomputers [5, 6].
Neurocomputers are designed as boards and systems for high-
speed ANN simulations [3, 4].

Parallelization of NN was made on various parallel or
distributed hardware architectures as workstation clusters [7-
9], large grain supercomputers [10-12] and specialized neural
network hardware systems [13, 14].

The aim of the paper is to investigate the efficiency of
parallel computations at the training stage of an error
backpropagation neural network. Flat parallel computational
model is suggested for NN training. The model employs
message passing for necessary data communication between
the concurrent running processes and is targeted to a
distributed memory parallel system. The utilization of
multithreading is considered for parallel computation of the
NN training on a shared memory platform. In order to exploit
both the high-level parallelism through the message-passing
and the low-level (loop) parallelism of the multithreading a
hybrid (multi-level) parallel programming model is also
utilized. Performance comparison is made for flat,
multithreaded and hybrid parallel programming models. Since
pattern recognition is among the most successive application
examples of the NN utilization the case study for character
recognition is used in the experimental estimation of the
performance parameters. Speedup and efficiency as well as
scalability in respect to the multicomputer size and its impact
on the performance of the parallel system are estimated.

II. NEURAL NETWORK TRAINING BY ERROR BACK
PROPAGATION

A NN consists of an enormous number of massively
interconnected nonlinear computational elements. Each
element performs a weighted summation of input values
received from other elements of the NN, applies an activation
function to the weighted sum and outputs its results to other
elements of the network.

A popular type of neural network is the multilayer
perceptron, in which the elements are organized into layers.
The layers are at least three and depending on the source of
their input values and the availability of their output values
are regarded as input, hidden and output layer. Each layer is
usually fully interconnected to its adjacent layers.

One type of multilayer perceptron is the backpropagation
neural network [15]. It is trained on a set of pairs (input value,
targeted output value) using a two pass supervised algorithm
based on the error correction learning rule [16]. During the
NN training the weights of the connections between the
elements are adjusted according to some learning rules. The
error backpropagation learning algorithm is given bellow in
pseudocode:

INITIALIZE 1Milena Lazarova is with the Faculty of Computer Systems
and Control, Department of Computer Systems, 8 Kliment
Ochridsky str., 1756 Sofia, Bulgaria, E-mail: milaz@tu-sofia.bg

Iter = 0; Max_Iter = IMax; Error = 0; Max_Error = EMax;
random small weights for all element connections;

441

REPEAT
FOR all training pairs m = 1, …, M

/* initialize forward pass */
FOR all elements j in the input layer

)(m
jj xo = (1)

 END FOR
/* run forward pass */

FOR all elements j in the hidden layers (l=1,2,…L–1)
and the output layer (L)

∑
−

1=
+−=

1)()()1()()()()(ln

j
l

itl
jtl

ji
l

i owa θt (2)

))(()()()(tft ao l
i

l
i = , 1 ≤ i ≤ nl (3)

 END FOR
/* initialize backward pass */

FOR all units j in the output layer L
))(1)(())(()()()()()(tototodt L

i
L

i
L

i
m
i

L
i −−=δ (4)

 END FOR
/* run backward pass */

FOR all units j in the hidden layers (l = 1, 2, … L-1)

∑ ++−=
j

l
ij

l
j

l
i

l
i

l
i twttotot)()())(1)(()()1()1()()()(δδ (5)

END FOR
/* update weight values */
FOR all units j in the hidden layers (l = 1, 2, … L-1)
and the output layer (L)

1,...,1,),()()1()()()(−=Δ+=+ LLltwtwtw l
ji

l
ji

l
ji

)1()()()()1()()(−Δ+=Δ − twtotw l
ji

l
j

l
i

l
ji μηδ

 (6)
 (7)

END FOR
END FOR
Iter = Iter +1;
/* estimate the error */
FOR all training pairs m = 1, …, M

∑ −=
i

L
i

m
i odnL

m 2)(1)(ε (8)

END FOR
UNTIL (Error < EMax) or (Iter > Max_Iter)

where w(l)
ji(t+1) is the new value of the weight connecting the

ith element of layer l with the jth element of the previous layer
l-1, w(l)

ji(t) is the same weight value at the previous iteration of
the algorithm, o(l-1)

j(t) is the output value of the jth element in
layer l–1, η is a learning rate parameter, μ is a momentum
term parameter and δi

(l) is the error value.

III. PARALLELIZATION STRATEGIES FOR NEURAL
NETWORK TRAINING

The strategies for parallelization of NN training (Fig.1)
can be distinguished as training, exemplar, node or weight
level parallelism [6]. Training session parallelism implies
independent training of the network on each node of a
multicomputer system using different training parameters and
initial network state. In this way the parallelism is actually
implemented as running several attempts of the training that is
a useful strategy if the error surface has a lot of local minima.

Fig.1. Strategies for parallelization of the NN training

Exemplar parallelism, also called training example
parallelism, is suitable when very large training sets are
utilized. In this case each process is assigned a subset of the
training exemplars and it only trains the network for this
training subset. At the end of each epoch the modifications of
the network weights are gathered and applied to the NN. The
node level parallelism takes the advantage of the natural
parallelism implied by the distributed nature of NN and maps
the elements to the processors of the multicomputer platform.
There are different approaches for distributing the training
phase computations between the nodes of a cluster exploiting
the fact that the calculations at each NN node are independent
[17]. In the next section a parallel computational model for
NN training on a multicomputer platform using node level
parallelism is suggested. Weight parallelism is the finest
grained solution that requires parallel calculation of the input
from each synapse. The weight parallelism provides no
additional capabilities over the node parallelism strategy and
introduces significantly more transactions of short messages.
That is why it is considered not suitable parallelization
strategy for a cluster computer [7]. On the other hand a
combination of weight level and node level parallelisms is
suitable for parallel computations on a shared memory system
utilizing the multithreaded programming model discussed in
chapter V.

IV. FLAT PARALLEL COMPUTATIONAL MODEL OF
NN TRAINING

Flat (MPI-based) parallel computational model for error
backpropagation neural network training on a multicomputer
platform based on node level parallelism is presented in Fig.2.
The model is based on a combination of two parallel
programming paradigms: SPMD and synchronous iterations.
The SPMD paradigm implies the data decomposition. For the
NN training case it is implemented by concurrent
computations of several processors at node level that is each
network layer is divided between the available processors.

The synchronous iterations paradigm is a special case of
the phase-parallel paradigm that can be regarded as alternating
between two phases: computation and communication phase.
At the computation phase each processor calculates the input
values of the nodes assigned to it. During the communication
phase each processor sends the calculated part of the output
vector to all other processes using global communication
function. The iteration is divided into forward pass that
corresponds to the calculation at the forward stage of the
learning algorithm followed by backpropagation pass that
corresponds to the calculation and distribution of the errors
backwards from the output to the input layer.

The NN is divided between the processes so that each
process is responsible for calculation of a part of the output

442

vector at each layer during the forward stage and part of the
error vector at each layer during the backward stage of the
training. The number of elements in each layer is equally
spread among the available processors in order to guarantee
good load balance. Thus before the training starts each
processor calculates the range of node indices at each of the
NN layers that are assigned to it according to the number of
active processes (function MPI_Size) and its rank (function
MPI_Rank). The input training parameters and the training set
comprising pairs of an input value and the targeted output
value are available to each process at the beginning of the
training. Each process performs the following tasks:
- forward pass, computation phase: calculates the output

values according to (3);
- forward pass, communication phase: sends the calculated

part of the output vector to all other processes (function
MPI_Allgather); in this way all processes receive the data
necessary for the calculation of the outputs of the next layer;

- repeats the previous two phases for all layers of the NN until
the output values of the output layer are calculated;

- backward pass, computation phase: calculates the errors and
the weights at the output layer according to (4) and (6);

- backward pass, communication phase: sends the calculated
part of the error vector to all other processes (function
MPI_Allgather); in this way all processes receive the data
necessary for calculation of the error values at the previous
layer according to the error backpropagation algorithm;

- repeats the previous two phases for all hidden layers
backwards to the input layer until all weights are updated
according to (5) and (6);

- calculates the output error for each training pattern and
terminates itself if the error limit or the predefined number
of iterations are reached.

The above described sequence of computation-
communication phases is repeated for all pairs in the training
set. The NN training continues until either of the termination
conditions occur. Each process resolves the end of the training
and terminates itself.

Fig.2. Parallel computational model for error backpropagation
training using flat (MPI) programming model

V. PARALLEL COMPUTATION OF NN TRAINING BY
MULTITHREADING

Multithreaded (OpenMP-based) parallel computational
model for error backpropagation neural network training on a
multiprocessor platform is implemented both at the forward
and backward stage of the NN training by utilization of node
and weight level parallelisms. Since the calculations
performed for the elements in each layer are completely
independent, unaware of the processing of other elements in
the same layer, a fork-join parallelism is used based on loop
level parallelization provided by the OpenMP API. Parallel
execution of for loops by dispatching of threads at the
beginning of a loop and assigning non-overlapping selections
of the loop to each thread is implemented by the OpenMP
pragma omp parallel for:

#pragma omp parallel for private (j, Net, Output)
#pragma omp parallel for private (j, Target, Actual, Delta)

where j is the number of the element in the layer, Net and
Output are respectively the net activation and the output value
calculated according to (2) and (3), Target and Actual are
respectively the target output and the current output and Delta
is the value calculated for the node according to (7).

Weight level parallelism is implemented as parallel for
loops calculating formulas (2), (5) and (6).

VI. PARALLELISM PROFILING AND PERFORMANCE
ANALYSIS

The suggested flat and multithreaded models are
implemented in С++ and compiled using Microsoft Visual
Studio 2005. Message passing is accomplished by MPI
implementation MPICH2 v.1.0.3. Hybrid model is also
developed utilizing both coarse grained (message-passing)
and fine grained (multithreading) parallelism.

The case study for experimental evaluation of the
performance parameters of the parallel NN training is
character recognition. Experiments were carried out for a
training set comprising examples of the digits from 0 to 9
represented in an aperture of 13 by 13 pixels as binary
thresholded images. Thus the input network layer consists of
169 input elements and 10 output elements.

The experimental computer platform consists of 10
workstations (Intel Pentium 4, 3.2GHz, 1G RAM, Hyper-
Threading) connected via Fast Ethernet Switch (100 Mbps).
Multithreaded model is also executed on a dual core machine
(Intel Core2 Duo, 1,83GHz, 1GB RAM).

Performance results are gathered for different sizes of the
hidden NN layer (25, 50, 150, 1000, 2000) and different
number of processors of the multicomputer (1 to 10).

The results for the speedup evaluated experimentally using
the flat, multithreaded and hybrid programming models are
given in Fig.3, Fig.4 and Fig.5 respectively. The successive
computation and communication phases of the MPI model are
seen in the Gantt’s chart of the communication transaction
given on Fig.6.

A speedup is gained with the flat (MPI) model only when
the number of the NN elements in the hidden layer is big

443

enough so that the communication overhead is comparable
with the computation time during the NN training. For less
than 150 hidden elements no speedup is achieved. The more
hidden elements are used the bigger is the speedup: it is 5.1
for 1000 and 6.56 for 2000 hidden elements. The scalability in
respect to the number of the processors is good up to a certain
size of the multicomputer where the speedup saturates and can
even decrease: for 150 hidden elements the serial training
outperforms the parallel calculations by more than 6
processors, for 1000 and 2000 hidden elements the speedup
does not increase for 8 or more elements.

444

Fig.3. Speedup of the flat
model

Fig.4. Speedup of the
multithreaded model

Similar results are observed for the experiments with the
OpenMP based multithreaded model: there is no speedup of
the parallel model for less than 150 hidden elements. The
obtained speedup for 2000 hidden elements on Dual Core
machine is 1.58 and 1.47 on Hyperthreading (HT) machine.
The smaller values for HT computer can be explained with the
bigger number of cache misses. The utilization of more
threads than the number of the processors does not increase
the performance parameters.

Fig.5. Speedup comparison
of the flat and the hybrid

models

Fig.6. Gantt’s chart of the
communication transaction using

MPI model

The speedup comparison of the flat and hybrid models of
the NN training shows better utilization of the parallel system
resources when a multi-level parallelism is utilized employing
computations by several multithreaded parallel processes:
speedup is increased with about 18% for less than 7 processes
and with about 10 % for larger sizes of the multicomputer.

VII. CONCLUSION

The paper investigates the efficiency of parallel
computations at the training stage of an error backpropagation
neural network. Based on the strategy for parallelization of
NN training known in the literature as node and weight level
parallelisms, flat, multithreaded and hybrid parallel
computational models are suggested and implemented. The
experimental evaluation of the performance parameters shows

that the parallel computational model outperforms the serial
training only when the NN comprises lots of elements. Hybrid
model leads to higher speedup than the flat model due to
better utilization of the parallel computer system resources.

REFERENCES

[1] C. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

[2] A. Jain, J. Mao, K. Mohiuddin, Artificial Neural Networks,
IEEE Computer, Vol.29, pp.31÷44, 1996.

[3] C. Lindsey, T. Lindblad, Review of Hardware Neural
Networks: A User's Perspective, Int. Journal of Neural Systems,
Vol.6, pp.215÷224,1995.

2
3

4
5

67
8910

25
50

150
1000

2000

0

1

2

3

4

5

6

7

Sp
ee

du
p

#Proc
#Nodes

2
3

4

25
 D

ua
l c

or
e

25
 H

yp
er

Tr

50
 D

ua
l c

or
e

50
 H

yp
er

Tr

15
0

D
ua

l c
or

e

15
0

H
yp

er
Tr

10
00

 D
ua

l c
or

e

10
00

 H
yp

er
Tr

20
00

 D
ua

l c
or

e

20
00

 H
yp

er
Tr

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sp
ee

du
p

#Threads

#Nodes

[4] F. Diasa, A. Antunesa, A. Motab, Artificial Neural Networks:
A Review of Commercial Hardware, Journal Engineering
Applications of Artificial Intelligence, Vol.17, №8,
pp.945÷952, 2004.

[5] N. Sundararajan, P. Saratchandran, Parallel Architectures for
Artificial Neural Networks: Paradigms and Implementations,
Wiley-IEEE Computer Society, 1998.

[6] T. Nordstrom, B. Svensson, Using and Designing Massively
Parallel Computers for Artificial Neural Networks, Journal of
Parallel and Distributed Computing, Vol.14, №3, pp.260÷285,
1992.

[7] M. Pethick, M. Liddle, P. Werstein, Z. Huang, Parallelization
of a Backpropagation Neural Network on a Cluster Computer,
Proc. of the Fifteenth IASTED International Conference on
Parallel and Distributed Computing and Systems, ACTA Press,
pp.574÷582, 2003.

[8] S. Suresh, S.N. Omkar, V. Mani, Parallel Implementation of
Back-Propagation Algorithm in Networks of Workstations,
Vol.16, No.1, pp.24÷34, 2005.

[9] R. Andonie, A. Chronopoulos, D. Grosu, H. Galmeanu, An
Efficient Concurrent Implementation of a Neural Network
Algorithm, Concurrency and Computation: Practice &
Experience, Vol.18, №12, pp.1559÷1573, 2006.

2
3

4
5

6
7

8910

1000 MPI

2000 MPI

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

#Proc
#Nodes

[10] X. Zhang and M. McKenna, The Back-Propagation Algorithm
on Grid and Hypercube Architecture,” Technical Report RL90-
9, Thinking Machines Corp., 1990.

[11] A. Gutierrez, F. Cavero, R. de Llano, J. Gregorio,
Parallelization of a Neural Net Training Program in a Grid
Environment, Proc. of 12th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pp.258÷265, 2004.

[12] U. Seiffert, Artificial Neural Networks on Massively Parallel
Computer Hardware, ESANN'2002 proceedings - European
Symposium on Artificial Neural Networks, Bruges (Belgium),
24-26 April 2002, pp. 319-330.

[13] N. Šerbedžija, Simulating Artificial Neural Networks on
Parallel Architectures, IEEE Computer, Vol.29, №3, pp.56÷63,
1996.

[14] S. Mahapatra, Mapping of Neural Network Models onto
Systolic Arrays, Journal Parallel and Distributed Computing,
Vol. 60, №6, pp.667÷689, 2000.

[15] Y. Chauvin, D. Rumelhart, Back Propagation: Theory,
Architectures, and Applications, Lawrence Erlbaum Associates,
1995.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. In D. E.
Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, volume 1. MIT Press, Cambridge, MA, 1986.

[17] R. Rogers, D. Skillicorn, Using the BSP Cost Model for
Optimal Parallel Neural Network Training, Lecture Notes in
Computer Science: Parallel and Distributed Processing,
Springer, Vol.1388, pp.297÷305, 1998.

