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Abstract - The paper investigates the efficiency of parallel 
computations at the training stage of an error backpropagation 
neural network. Flat, multithreaded and hybrid parallel 
computational models are suggested. Performance comparison is 
made and scalability in respect to the multicomputer size and its 
impact on the performance of the parallel system is estimated. 
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I. INTRODUCTION 

Artificial neural network (NN) is an interconnected 
assembly of simple processing elements whose functionality 
is loosely based on the structure and functioning of the brain 
[1]. The processing ability of the NN is stored in the inter-unit 
connection strengths (weights) obtained by a process of 
adaptation to or learning from a set of training patterns. 
Among the basic properties of the NN that distinguishes them 
from the von Neuman computer are [2]: massive parallelism, 
distributed representation and computation, learning ability, 
self-organization, generalization ability, adaptivity, fault 
tolerance. 

In order to apply a NN for solving particular problem the 
network has to be trained to effectively map an input set of 
values into an output space defined by the output element 
values. The training can be either supervised or self-
organization process but in both cases it requires consecutive 
repetition of the adjustment of the values of inter-node 
weights. Therefore the NN training usually involves a lot of 
computations and is time-consuming. The problem of large 
training times can be overcome either by devising faster 
learning algorithms or by implementing the existing 
algorithms on parallel computing architectures [3, 4]. Shifting 
towards parallelization is a natural process of NN due to the 
inherent massive parallelism of their biological original: the 
brain. Since the computations of the model components are 
largely independent of each other most of the NN models 
have great potential for parallelism. The larger are the NN 
architecture and the training data set the more relevant is the 
exploitation of the inherent parallelism of NN. 

The approach of NN parallelization depends on the 
specifics of the NN architecture and the organization of inter-
node communications but most NN models are rather easily 
viable on parallel hardware of all kinds. Parallel architectures 
for simulating neural networks can be subdivided into general 
purpose parallel computers and neurocomputers [5, 6]. 
Neurocomputers are designed as boards and systems for high-
speed ANN simulations [3, 4].  

Parallelization of NN was made on various parallel or 
distributed hardware architectures as workstation clusters [7-
9], large grain supercomputers [10-12] and specialized neural 
network hardware systems [13, 14].  

The aim of the paper is to investigate the efficiency of 
parallel computations at the training stage of an error 
backpropagation neural network. Flat parallel computational 
model is suggested for NN training. The model employs 
message passing for necessary data communication between 
the concurrent running processes and is targeted to a 
distributed memory parallel system. The utilization of 
multithreading is considered for parallel computation of the 
NN training on a shared memory platform. In order to exploit 
both the high-level parallelism through the message-passing 
and the low-level (loop) parallelism of the multithreading a 
hybrid (multi-level) parallel programming model is also 
utilized. Performance comparison is made for flat, 
multithreaded and hybrid parallel programming models. Since 
pattern recognition is among the most successive application 
examples of the NN utilization the case study for character 
recognition is used in the experimental estimation of the 
performance parameters. Speedup and efficiency as well as 
scalability in respect to the multicomputer size and its impact 
on the performance of the parallel system are estimated.  

II. NEURAL NETWORK TRAINING BY ERROR BACK 
PROPAGATION 

A NN consists of an enormous number of massively 
interconnected nonlinear computational elements. Each 
element performs a weighted summation of input values 
received from other elements of the NN, applies an activation 
function to the weighted sum and outputs its results to other 
elements of the network.  

A popular type of neural network is the multilayer 
perceptron, in which the elements are organized into layers. 
The layers are at least three and depending on the source of 
their input values and the availability of their output values 
are regarded as input, hidden and output layer. Each layer is 
usually fully interconnected to its adjacent layers. 

One type of multilayer perceptron is the backpropagation 
neural network [15]. It is trained on a set of pairs (input value, 
targeted output value) using a two pass supervised algorithm 
based on the error correction learning rule [16]. During the 
NN training the weights of the connections between the 
elements are adjusted according to some learning rules. The 
error backpropagation learning algorithm is given bellow in 
pseudocode: 

INITIALIZE  1Milena Lazarova is with the Faculty of Computer Systems 
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Iter = 0; Max_Iter = IMax; Error = 0; Max_Error = EMax; 
random small weights for all element connections; 
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REPEAT 
FOR all training pairs m = 1, …, M 

/* initialize forward pass */ 
FOR all elements j in the input layer 
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 END FOR 
/* run forward pass */ 

FOR all elements j in the hidden layers (l=1,2,…L–1)  
and the output layer (L) 
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 END FOR 
/* initialize backward pass */ 

FOR all units j in the output layer L 
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 END FOR 
/* run backward pass */ 

FOR all units j in the hidden layers (l = 1, 2, … L-1) 
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END FOR 
/* update weight values */ 
FOR all units j in the hidden layers (l = 1, 2, … L-1)  
and the output layer (L) 
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END FOR 
END FOR 
Iter = Iter +1; 
/* estimate the error */ 
FOR all training pairs m = 1, …, M 
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END FOR 
UNTIL (Error < EMax) or (Iter > Max_Iter) 

where w(l)
ji(t+1) is the new value of the weight connecting the 

ith element of layer l with the jth element of the previous layer 
l-1, w(l)

ji(t) is the same weight value at the previous iteration of 
the algorithm, o(l-1)

j(t) is the output value of the jth element in  
layer l–1, η is a learning rate parameter, μ is a momentum 
term parameter and δi

(l) is the error value. 

III. PARALLELIZATION STRATEGIES FOR NEURAL 
NETWORK TRAINING  

The strategies for parallelization of NN training (Fig.1) 
can be distinguished as training, exemplar, node or weight 
level parallelism [6]. Training session parallelism implies 
independent training of the network on each node of a 
multicomputer system using different training parameters and 
initial network state. In this way the parallelism is actually 
implemented as running several attempts of the training that is 
a useful strategy if the error surface has a lot of local minima. 

 
Fig.1. Strategies for parallelization of the NN training 

Exemplar parallelism, also called training example 
parallelism, is suitable when very large training sets are 
utilized. In this case each process is assigned a subset of the 
training exemplars and it only trains the network for this 
training subset. At the end of each epoch the modifications of 
the network weights are gathered and applied to the NN. The 
node level parallelism takes the advantage of the natural 
parallelism implied by the distributed nature of NN and maps 
the elements to the processors of the multicomputer platform. 
There are different approaches for distributing the training 
phase computations between the nodes of a cluster exploiting 
the fact that the calculations at each NN node are independent 
[17]. In the next section a parallel computational model for 
NN training on a multicomputer platform using node level 
parallelism is suggested. Weight parallelism is the finest 
grained solution that requires parallel calculation of the input 
from each synapse. The weight parallelism provides no 
additional capabilities over the node parallelism strategy and 
introduces significantly more transactions of short messages. 
That is why it is considered not suitable parallelization 
strategy for a cluster computer [7]. On the other hand a 
combination of weight level and node level parallelisms is 
suitable for parallel computations on a shared memory system 
utilizing the multithreaded programming model discussed in 
chapter V. 

IV. FLAT PARALLEL COMPUTATIONAL MODEL OF 
NN TRAINING  

Flat (MPI-based) parallel computational model for error 
backpropagation neural network training on a multicomputer 
platform based on node level parallelism is presented in Fig.2. 
The model is based on a combination of two parallel 
programming paradigms: SPMD and synchronous iterations. 
The SPMD paradigm implies the data decomposition. For the 
NN training case it is implemented by concurrent 
computations of several processors at node level that is each 
network layer is divided between the available processors.  

The synchronous iterations paradigm is a special case of 
the phase-parallel paradigm that can be regarded as alternating 
between two phases: computation and communication phase. 
At the computation phase each processor calculates the input 
values of the nodes assigned to it. During the communication 
phase each processor sends the calculated part of the output 
vector to all other processes using global communication 
function. The iteration is divided into forward pass that 
corresponds to the calculation at the forward stage of the 
learning algorithm followed by backpropagation pass that 
corresponds to the calculation and distribution of the errors 
backwards from the output to the input layer.  

The NN is divided between the processes so that each 
process is responsible for calculation of a part of the output 
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vector at each layer during the forward stage and part of the 
error vector at each layer during the backward stage of the 
training. The number of elements in each layer is equally 
spread among the available processors in order to guarantee 
good load balance. Thus before the training starts each 
processor calculates the range of node indices at each of the 
NN layers that are assigned to it according to the number of 
active processes (function MPI_Size) and its rank (function 
MPI_Rank). The input training parameters and the training set 
comprising pairs of an input value and the targeted output 
value are available to each process at the beginning of the 
training. Each process performs the following tasks: 
- forward pass, computation phase: calculates the output 

values according to (3); 
- forward pass, communication phase: sends the calculated 

part of the output vector to all other processes (function 
MPI_Allgather); in this way all processes receive the data 
necessary for the calculation of the outputs of the next layer; 

- repeats the previous two phases for all layers of the NN until 
the output values of the output layer are calculated; 

- backward pass, computation phase: calculates the errors and 
the weights at the output layer according to (4) and (6); 

- backward pass, communication phase: sends the calculated 
part of the error vector to all other processes (function 
MPI_Allgather); in this way all processes receive the data 
necessary for calculation of the error values at the previous 
layer according to the error backpropagation algorithm; 

- repeats the previous two phases for all hidden layers 
backwards to the input layer until all weights are updated 
according to (5) and (6); 

- calculates the output error for each training pattern and 
terminates itself if the error limit or the predefined number 
of iterations are reached. 

The above described sequence of computation-
communication phases is repeated for all pairs in the training 
set. The NN training continues until either of the termination 
conditions occur. Each process resolves the end of the training 
and terminates itself.  

 

Fig.2. Parallel computational model for error backpropagation 
training using flat (MPI) programming model 

V. PARALLEL COMPUTATION OF NN TRAINING BY 
MULTITHREADING 

Multithreaded (OpenMP-based) parallel computational 
model for error backpropagation neural network training on a 
multiprocessor platform is implemented both at the forward 
and backward stage of the NN training by utilization of node 
and weight level parallelisms. Since the calculations 
performed for the elements in each layer are completely 
independent, unaware of the processing of other elements in 
the same layer, a fork-join parallelism is used based on loop 
level parallelization provided by the OpenMP API. Parallel 
execution of for loops by dispatching of threads at the 
beginning of a loop and assigning non-overlapping selections 
of the loop to each thread is implemented by the OpenMP 
pragma omp parallel for: 

#pragma omp parallel for private (j, Net, Output) 
#pragma omp parallel for private (j, Target, Actual, Delta)  

where j is the number of the element in the layer, Net and 
Output are respectively the net activation and the output value 
calculated according to (2) and (3), Target and Actual are 
respectively the target output and the current output and Delta 
is the value calculated for the node according to (7). 

Weight level parallelism is implemented as parallel for 
loops calculating formulas (2), (5) and (6). 

VI. PARALLELISM PROFILING AND PERFORMANCE 
ANALYSIS 

The suggested flat and multithreaded models are 
implemented in С++ and compiled using Microsoft Visual 
Studio 2005. Message passing is accomplished by MPI 
implementation MPICH2 v.1.0.3. Hybrid model is also 
developed utilizing both coarse grained (message-passing) 
and fine grained (multithreading) parallelism. 

The case study for experimental evaluation of the 
performance parameters of the parallel NN training is 
character recognition. Experiments were carried out for a 
training set comprising examples of the digits from 0 to 9 
represented in an aperture of 13 by 13 pixels as binary 
thresholded images. Thus the input network layer consists of 
169 input elements and 10 output elements. 

The experimental computer platform consists of 10 
workstations (Intel Pentium 4, 3.2GHz, 1G RAM, Hyper-
Threading) connected via Fast Ethernet Switch (100 Mbps). 
Multithreaded model is also executed on a dual core machine 
(Intel Core2 Duo, 1,83GHz, 1GB RAM). 

Performance results are gathered for different sizes of the 
hidden NN layer (25, 50, 150, 1000, 2000) and different 
number of processors of the multicomputer (1 to 10). 

The results for the speedup evaluated experimentally using 
the flat, multithreaded and hybrid programming models are 
given in Fig.3, Fig.4 and Fig.5 respectively. The successive 
computation and communication phases of the MPI model are 
seen in the Gantt’s chart of the communication transaction 
given on Fig.6. 

A speedup is gained with the flat (MPI) model only when 
the number of the NN elements in the hidden layer is big 

443 



enough so that the communication overhead is comparable 
with the computation time during the NN training. For less 
than 150 hidden elements no speedup is achieved. The more 
hidden elements are used the bigger is the speedup: it is 5.1 
for 1000 and 6.56 for 2000 hidden elements. The scalability in 
respect to the number of the processors is good up to a certain 
size of the multicomputer where the speedup saturates and can 
even decrease: for 150 hidden elements the serial training 
outperforms the parallel calculations by more than 6 
processors, for 1000 and 2000 hidden elements the speedup 
does not increase for 8 or more elements.  
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Fig.3. Speedup of the flat 
model 

Fig.4. Speedup of the 
multithreaded model 

Similar results are observed for the experiments with the 
OpenMP based multithreaded model: there is no speedup of 
the parallel model for less than 150 hidden elements. The 
obtained speedup for 2000 hidden elements on Dual Core 
machine is 1.58 and 1.47 on Hyperthreading (HT) machine. 
The smaller values for HT computer can be explained with the 
bigger number of cache misses. The utilization of more 
threads than the number of the processors does not increase 
the performance parameters. 

 
 
 
 
 
 
 
 
 

Fig.5. Speedup comparison 
of the flat and the hybrid 

models 

Fig.6. Gantt’s chart of the 
communication transaction using 

MPI model 

The speedup comparison of the flat and hybrid models of 
the NN training shows better utilization of the parallel system 
resources when a multi-level parallelism is utilized employing 
computations by several multithreaded parallel processes: 
speedup is increased with about 18% for less than 7 processes 
and with about 10 % for larger sizes of the multicomputer. 

VII. CONCLUSION 

The paper investigates the efficiency of parallel 
computations at the training stage of an error backpropagation 
neural network. Based on the strategy for parallelization of 
NN training known in the literature as node and weight level 
parallelisms, flat, multithreaded and hybrid parallel 
computational models are suggested and implemented. The 
experimental evaluation of the performance parameters shows 

that the parallel computational model outperforms the serial 
training only when the NN comprises lots of elements. Hybrid 
model leads to higher speedup than the flat model due to 
better utilization of the parallel computer system resources.  
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