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Abstract – In this paper we provides a synthetic introduction to 
the methods and fundamental principles involved in turbo-
coding and in the associated iterative decoding strategy. The 
fundamental concepts of soft decision and of soft decoding of a 
binary code are therefore first considered. The recent 
interpretation of the turbo decoding algorithm using the 
mathematical framework provided by factor graph theory is 
then briefly explained. 
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I. INTRODUCTION 

There are a great variety of decoding algorithms, some 
heuristic and some derived from well-defined optimality 
criteria. The purpose of the a posteriori probability (APP) 
algorithm is to compute a posteriori probabilities on either the 
information bits or the encoded symbols. Maximizing the a 
posteriori probabilities by themselves leads to only minor 
improvements in terms of bit error rates compared to the 
Viterbi algorithm [1]. The algorithm was originally invented 
by Bahl, Cocke, Jelinek, and Raviv [2] and was used to 
maximize the probability of each symbol being correct, 
referred to as the maximum a posteriori probability (MAP) 
algorithm. 

With the invention of turbo codes in 1993 [3], however, the 
situation turned, and the APP became the major representative 
of the so-called soft-in soft-out (SISO) algorithms for 
providing probability information on the symbols of the code. 
These probabilities are required for iterative decoding and 
concatenated coding schemes with soft decision decoding of 
the inner code, such as iterative decoding of turbo codes [4,5]. 

II. FUNDAMENTALS OF SISO ALGORITHMS 

Markov process and convolutional codes 

A Markov process may be characterized at each instant i (i 
= 0,…,N) by a state  which belongs to a finite set ie ε  of 
possible states. It has the following fundamental property: 

 ( ) ( )( )101,..., −− = iiii eePeeeP  (1) 

The probability for such a process to be in a given state at 
instant i only depends on its state at the preceding instant i-1. 
Such a Markov process associates an output sequence x with 
an input sequence u. At instant i, the entry ui (i=1,…,N) of the 
sequence u in input causes a transition between the states 

'1 eei =−  and eei =  of the process. It generates the 
corresponding symbols xi of the output sequence x. 
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Fig.1 Rate ½ NSC code 

 
A convolutional encoder may obviously be regarded as a 

Markov process, the classical case of a rate r=1/n non 
systematic convolutional (NSC) code is shown on Fig.1. 

Assuming a code with memory M, the state of the 
associated Markov process at time i is then simply given by: 

 ( )1,..., +−= Miii uue  (2) 

There are thus 2M possible states, then it is possible to 
represent a convolutional code by means of a state diagram as 
illustrated in Fig. 2 [6]. 
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Fig.2 Code state diagram 

 
The code trellis, which gives the code states as a function of 

the time index [6] is shown on Fig. 3. The encoding of a given 
information sequence can be associated with a path through 
the latter diagrams. 

The problem of the decoding of a convolutional code can 
be seen as the problem of the estimation of the state sequence 

( )Neee ,...,0=  of the associated Markov process, based on the 
received sequence y (which corresponds to the noisy 
observation of the coded sequence x). 1Georgi V. Hristov is with the Department of Communication
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Fig.3 Code trellis diagram 

 
Once the sequence ê  is known, there is a one-to-one 

relation with the sequences x̂  and û . 

Conventional decoding: MAP sequence estimation 

A conventional approach for the decoding of a 
convolutional code is to perform MAP sequence estimation. 
Given the sequence y, this consists in finding the information 
sequence u for which the a posteriori probability ( )yuP  is 

maximum: 

 ( ){ }yuPu
u
maxargˆ =  (3) 

If no a priori information is available, this approach reduces 
to the so-called maximum likelihood sequence estimation 
(MLSE) approach: 

 ( ){ }uyPu
u
maxargˆ =  (4) 

The above problem of MAP sequence estimation can be 
stated more generally as follows: given the sequence y of 
observations of a discrete-time finite-state Markov process in 
memoryless noise, find the state sequence ê  for which the 

corresponding a posteriori probability ( )yeP ˆ  is maximum: 

 ( ){ }yePe
e
maxargˆ =  (5) 

This is obviously equivalent to: 

 ( ){ }eyPe
e
maxargˆ =  (6) 

Due to the Markov and memoryless properties of the 
system, we can decompose ( )yeP  on the following way: 
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The above path metric in the logarithmic domain can be 
decomposed into a sum of individual transition metrics: 
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=

− ===
N

i
iii eeeeyeP

1
1 ,',ln γ )  (8) 

III. SYMBOL-BY-SYMBOL APP ESTIMATION 

The associated SISO decoder has to provide the a posteriori 
LLR sequence Lp with entries: 
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on the basis of the received sequence y, and of the a priori 

information sequence La with entries 
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The detected bits are finally found using hard detection: 
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This decoding strategy is equivalent to finding the most 
likely information symbols ui (i=1,…,N) given the observed 
coded sequence y: 

 ( )yuPu i
u

i
i

maxargˆ = , (i=1,…,N) (11) 

The a posteriori probabilities of the states and transitions of 
a Markov source observed through a discrete-time 
memoryless channel is optimally solved by the BCJR 
algorithm [1]. Based on the latter algorithm, a slight 
modification enables to provide the symbol a APP's 

( ) ( )yuPuP iip

Δ
= , and by the way to form the required a 

posteriori LLR's at the SISO decoder output. [1, 6, 7]. 

The MAP (BCJR) algorithm 

We considered a binary coded communication system, 
assuming a rate r=1/n NSC code. The available data is the 
sequence y of the received symbols, the sequence La of a 
priori information, the initial state  and the final state 0∈ N∈  
of the encoding process, the code trellis, and the channel 
characteristics. 

Considering a given transition in the trellis at time i, the a 
posteriori LLR's given in (9) is: 
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where  (resp. ) is the set of transitions (+ε −ε '1 eei =− , 
eei = ) caused by a symbol ui=1 (resp. ui=0). This can be 

simplified as: 
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The problem is to evaluate the probability p( '1 eei =− , 
, eei = y). The latter probability can be decomposed as: 

 ( ) ( ) ( ) ( )eeeeyeeeep iiiii βγα .,'.',,' 11 −− ===  (14) 

These quantities can be respectively evaluated as follows: 
1. The parameters α are obtained via the following 

recursion: 

 , ( ) ( ) ( )eeee i
e

ii ,'.'
'

1 γαα
ε
∑
∈

−= ( )ε∈∀−= eNi ;1,...,0  (15) 

It is called forward recursion, as it implies to go through the 
trellis from the state  till the state . The following initial 
conditions are used for the recursion: 

0e Ne

 ( ) 100 =eα  and ( ) 000 =≠ eeα  (16) 

which means that the coder is assumed to begin in the state 
. 0e
2. The parameters β are obtained in practice via the 

following recursion: 

 , ( ) ( ) ( )∑
∈

− =
ε

γββ
e

iii eeee ,'.'1 ( )ε∈∀+= ';1,...,2 eNi  (17) 

It is called backward recursion, as it implies to go through 
the trellis from the state  to the state . If trellis 
termination is implemented at the encoder, the following 
initial conditions are used: 

Ne 0e

 ( ) 1=NN eβ  and ( ) 0=≠ NN eeβ  (18) 

which means that the encoder is assumed to end in the state 
. If no trellis termination is implemented, the following 

initial conditions are then used: 
Ne

 ( ) MN s
2
1

=β , ε∈∀e  (19) 

which means that one may end with the same probability in 
each of the 2M possible states. 

3. The parameter ( )eei ,'γ  is associated with a transition 
between the states '1 eei =−  and eei = . We have that: 

 ( ) ( ) ( )'.,',' 11 eeeePeeeeypee iiiiii ===== −−γ  (20) 

Written in terms of symbols rather than in terms of states, 
this expression becomes: 

 ( ) ( ) ( )iiiii uPeeuypee .',,' 1 == −γ  (21) 

The first factor ( )', 1 eeuyp is evaluated on the basis of 

the received symbols and of the channel type, whereas the 

second factor P(ui) is evaluated on the basis of the available a 
priori information La(ui). Parameter 

iii
=−  

)( eei ,'γ  is often referred 
to as the metric associated with the transition ( '1 eei =− , 

eei = ). 
The MAP algorithms evaluates the a posteriori LLR's L(ui) 

of the information bits ui (for i=1,…,N) according to: 

 ( ) ( ) ( ) ( )
( ) ( )( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

∑
∑

−
−

−
+

eee

ee

i

i

βγ

βγ

.,'.

.,'.

e

ee
uL

ii

ii
ip αε

αε

'

'
ln

1

1  (22) 

where the parameters α and β are obtained through recursions 
based on (15) and (17). The parameters γ are calculated 
according to (21), based on the received symbols, the 
considered channel, and the a priori information available 
about the transmitted information symbols. 

The MAX-LOG-MAP algorithm 

The MAP algorithm suffers from numerical problems 
related to the finite precision representation of numbers. As 
shown in [7], these problems can be solved by working in the 
logarithmic domain: ( ) ( )( )ee ii αα ln= , ( ) ( )( )eiei ββ ln=  and 

( ) ( )( )ee ii γγ ln= . In this case, (22) can be reformulated as: 
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This expression can then be further simplified by using the 
approximation for the logarithm of a sum of exponentials: 

 ( ) ( ) ( )( ) ( zyxzyx ,,maxexpexpexpln ≈+ )+  (23) 

This leads to: 
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The parameters α , β  and γ  are calculated as follows. 

1. The parameters α  are calculated according to the 
following forward recursion, with initial conditions 
modified accordingly: 

 ( ) ( ) ( )( )eeee ii
e

i ,''max 1
'

γαα
ε

+= −
∈

 (25) 

2. Similarly, the parameters β  are calculated according 
to the following backward recursion with initial 
conditions modified accordingly: 

 ( ) ( ) ( )( )eeee iiei ,'max1 γββ
ε

+=
∈

−  (26) 
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3. The parameters γ  are calculated based on (21) 
transposed in the logarithmic domain: 
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 ( ) ( )( ) ( )( iiiii uPeeuypee ln',ln,' 1 +== −γ )  (27) 

The LOG-MAP algorithm 

It is possible to preserve the optimality of the MAP 
algorithm while keeping all the advantages associated with the 
formulation in the logarithmic domain. Instead of using the 
approximation given by (23), we must therefore use the 
following exact expression [7]: 

 
( ) ( )( ) ( ) ( )( )

( )yx                                

yxyxyx

,max

exp1ln,maxexpexpln
*

=

−−++=+
 (28) Fig.4 Performance of SISO decoding algorithms 

V. CONCLUSION If there is more than two entries, one has to proceed 
recursively: 
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  (29) 
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The simulation result shows that at low Eb/N0 ratios, the 
MAX-LOG-MAP algorithm leads to noticeable performance 
degradation. At high Eb/N0 ratios and for a sufficient iteration 
number, the MAX-LOG-MAP algorithm offers performance 
quasi-identical to those of the LOG-MAP algorithm, because 
the approximation on which the MAX-LOG-MAP algorithm 
is based becomes more valuable as the considered signal-to-
noise ratio is increasing. 

This function may be considered as a generalized maximum 
function. The LOG-MAP algorithm proceeds exactly the same 
way as the MAX-LOG-MAP algorithm, the only difference 
being that the classical maximum function is replaced by the 
above generalized maximum function in (24), (25) and (26). 
The a posteriori LLR write: 
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