

Third Party Control in SIP Conferencing
Ivaylo I. Atanasov, Pavlina H. Koleva, and Evelina N. Pencheva

Abstract – The paper investigates capabilities of integrating

third party applications control in control SIP (Session Initiation
Protocol) conferencing. The capabilities of OSA (Open service
access) application programming interface for conference call
control are studied to identify which of the requirements for
tightly coupled SIP conferences are met. Suggestion is made
about new methods of OSA conference call control interfaces to
support SIP conferencing requirements.

Keywords – IP-Multimedia Subsystem, Session Initiation
Protocol, Open service Access, Conference call control

I. INTRODUCTION

The IP- Multimedia Subsystem (IMS) of Next Generation
Networks supports all kind of value-added services. In order
to be able to implement future applications/end user services
that are not yet known today, a highly flexible framework for
services is required. Open Service Access (OSA) enables
applications implementing the services to make use of
network functionality through application programming
interfaces (API). OSA provides the glue between applications
and network functionality. In this way applications
implementing the services become independent from the
underlying network technology.

IMS services can reside either in the user's home network
or in a third party location and are based on Session Initiation
Protocol (SIP) [1]. The main components of the IMS,
involved in SIP signaling, are the Call Session Control
Functions (CSCF) [2]. The SIP servers with functionality of
Call Session Control Functions perform a number of functions
such as multimedia session control and address translation
function. The Call Session Control Functions cooperates with
Application Servers via the IP multimedia service control
interface. The Application Servers where IMS services reside
in might be:
• SIP Application Server which may influence and impact

on the SIP session on behalf of the end systems,
depending on the services.

• Intelligent network Application Server; the purpose of
which is to host the Customized Applications for Mobile
network Enhanced Logic (CAMEL) network

• OSA service capability server (OSA SCS) - which offers
access to the IMS for the OSA Application Server in a
standardized way for third parties.

• OSA Application Server which provides the service
logic execution environment for client applications using
the OSA API.

Ivaylo I. Atanasov, Pavlina H. Koleva and Evelina N. Pencheva
are with the Faculty of Telecommunications, Technical University of
Sofia, Kliment Ohridski 8, 1000 Sofia, Bulgaria, E-mail: iia@tu-
sofia.bg, p_koleva@tu-sofia.bg, enp@tu-sofia.bg

Fig.1 shows the value-added service architecture over IMS.

Fig.1 IMS service architecture

OSA Application
server

OSA API

SIP

CAMEL Application
server

SIP Application
server

Service
Switching
Function

SIP
SIP

CAP

CSCF

IP Multimedia Subsystem

SCS

The OSA offers four standardized interfaces for call
control. The Generic Call Control API defines simple call
control interface which allows only setup of traditional two-
party telephone calls [3]. The Multiparty Call Control API
allows control of calls with zero or more parties and
distinguishes between the call and its connections [4]. The
Multimedia Call Control API deals with multimedia
connections between parties [5]. The Conference Call Control
API is for control of multimedia calls in which there exists the
possibility of defining additional relationships between the
parties [6]. The mapping of OSA Multiparty Call Control API
onto SIP signaling is provided in [7]. There is no mapping
between Multimedia Call Control API and Conference Call
Control API onto SIP signaling.

In this paper we investigate the capabilities of OSA
Conference Call Control API to support SIP conferencing.
Considering high level requirements for tightly coupled SIP
conferencing [8] we identify the way SIP conferencing
requirements are supported by OSA and suggest extensions of
Conference Call Control API for SIP conferencing
requirements which are not supported.

II. SIP CONFERENCE FRAMEWORK

A tightly coupled SIP conference [9] is an association of
SIP user agents (conference participants) with a central point,
conference focus. The conference focus is a logical role and
applies conference policy. The focus can be implemented
either by a participant or by a separate application server. A
dedicated conference server, in addition to the basic features,
offers richer functionality including simultaneous
conferences, large scalable conferences, reserved conferences,
and managed conferences. A conferencing server can support
any subset of the advanced conferencing functions. The
conference URI is a SIP URI that identifies the focus of the
conference.

48

The media graph of a SIP conference can be centralized,
decentralized, or any combination of both, and potentially
differ per media type. In the centralized case, the media
sessions are established between the focus and each one of the
participants. In the de-centralized case, the media graph is a
mesh among the participants. The media processing can be
performed either by the focus alone or by the participants.

A side-bar (subconference) is a conversation amongst a
subset of the participants to which the remaining participants
are not privy.

In case of OSA control of SIP conferences the conference
focus is integrated with Conference Call Control Service
Capability Feature (SCF). The SCF is abstraction of network
functionality and is provided by Service Capability Server.

Fig.2 shows a possible physical realization of basic

functions. This is the classic “one box” solution where along
with the focus functions are also implemented mixing
functions. The mixer receives a set of media streams of the
same type, and combines their media in a type-specific
manner, redistributing the result to each participant. This
includes media transported using RTP.

III. OSA CONFERENCE CALL CONTROL API

Most of the OSA interfaces follow a common structure.
The Conference Call Control API provides three interfaces

at network side. The IpConfCallControlManager interface is
the factory interface for creating conferences. The IpConfCall
interface manages subconferences (side-bars). The
IpSubConfCall interface provides grouping mechanism within
conference.

There are also three interfaces at application side. The
IpAppConfCallControlManager interface provides application
with additional callbacks when a conference is created by the
network. The IpAppConfCall interface allows applications to
handle call responses and state reports. The IpAppSubConf-
Call interface allows applications to handle call responses and
state reports form a subconference.

In the next section we provide a study on OSA Conference
Call Control API’s support of SIP conferencing requirements,
as shown in fig.2.

IV. OSA CONFERENCE CALL CONTROL AND SIP
CONFERENCING REQUIREMENTS

A. Discovery phase

The discovery phase allow to reveal a location of SIP
conferencing server, to determine if a referred SIP entity has
focus capabilities and to obtain conference characteristics
based on conference ID. In case of implementation shown in
Fig.2, these requirements can be met by configuration means
or by using proprietary conventions.

B. Conference creation

The OSA application can create a pre-arranged conference
by invoking ‘createConference()’ method of IpConfCall-
ControlManager interface. The Conference Call Control API
provides methods for resource reservation and resource
release to support pre-arranged conferences.

OSA API

OSA Conference applications

SIP conference focus

Conference Call
Control SCF SIP

dialog

Mixer

SIP
dialog

RTP
streams

RTP
streams

SIP conferencing Service
Capability Server

User
agent

User
agent

Fig.2 SIP conferencing OSA control architecture

C. Conference termination

The IpConfCall interfaces inherits from IpMultiPartyCall
interface its ‘release()’ method which requests the release of
conference call object and associated objects. The OSA
Conference Call Control API does not provide means for
requesting a focus to revert a two-party conference to a basic
SIP point-to-point session. A method of IpConfCall interfaces
may be defined to request such transformation including the
release of the associated conferencing resources.

D. Participant’s manipulation

The OSA application can request from the conference focus
to invite or to disconnect a participant by invoking ‘create-
AndRouteLegReq()’ method and ‘release()’ method of IpSub-
ConfCall interface inherited from IpMultiMediaCall interface.

The IpAppConfCall interface allows the application to
handle parties entering and leaving the conference. Its method
‘partyJoined()’ indicates that a new party has joined the
conference. This can be used in case the application
implements conference policy to allow or reject a new
participant. By invoking ‘leaveMonitorReq()’ method the
application can request a notification when a party leaves the
conference. The ‘leaveMonitorRes()’ method invoked on
application indicates that a party has left the conference.

The OSA application can invite a user agent or a list of user
agents to a particular active conference. Fig.3 shows an
example of requesting a focus to add a new resource to a
conference.

A conference participant can join the conference
anonymously by announcing its presence but without
disclosing identity. A so called passive participant can join a
conference in a “hidden mode”, without disclosure of
presence. The OSA allows anonymous participation no means
are available for application to distinguish anonymous and
hidden modes.

49

Fig.3 Requesting a Focus to Add a New Resource to a Conference

: IpAppLogic

: IpAppConf-
CallControl-

Manager

: IpApp-
ConfCall

: IpConf-
Call

Focus

OSA SCS

new() createNotification()

reportNotification()
‘forward event’

REFER sip:Conf-ID Refer-to:UserB

202 Accepted

User agent A

: IpConf-
CallControl-

Manager

INVITE Contact:Conf-ID; isfocus

ACK

200 OK

RTP

NOTIFY (Trying)

User agent B

: IpApp-
CallLeg

: IpCall-
Leg

new()

createAndRoutecallReq() new()

180 Ringing

200 OK

RTP

NOTIFY (OK)

200 OK
SUBSCRIBE sip:Conf-ID

200 OK

NOTIFY

200 OK

‘forward event’
eventReportRes()

eventReportReq()

NOTIFY

200 OK

E. Conference state information

The conference state describes the conference in progress.
This includes different conference aspects: participants'
information (such as dialog identifiers and state), media
sessions in progress (such as current stream contributing
sources and encoding schemes), the current loudest speaker,
the current chair, etc. Conference state is the latest conference
snapshot triggered by changes in participants' state,
conference policy changes, etc.

The list of conference participants can be received by OSA
application by invoking ‘getCallLegs()’ method of IpConfCall
interface inherited from IpMultiMediaCall interface. The
application can invoke ‘getConferenceAddress()’ to receive
address with which the conference can be addressed.

The application can register its interest in (selected)
conference state changes including events like party joining
and party leaving the conference.

The application uses createNotification() method to enable
call notifications so that events can be sent. This is the first
step an application has to do to get initial notifications of
conference calls happening in the network. For example,
when a user agent refers to a conference focus requesting a
focus to invite another user agent to an active conference (see
Fig.3), the application can be notified by invoking its
‘reportNotification()’ method.

To set, clear or change the criteria for the events concerning
a particular participant in the conference, the application uses
‘eventReportReq()’ method of IpCallLeg interface. Reports
that an event has occurred that was requested to be reported

(for example an invited participant answers) are sent to
application by invoking ‘eventReportRes()’ method of
IpAppCallLeg interface.

If it is authorized, the OSA application can changed the
conference policy in an ongoing conference by calling
‘changeConferencePolicy()’ method of IpSubConfCall
interface. The OSA Conference Call Control API does not
provide means for notifications when conference policy has
changed. A ‘confPolicyChanged()’ method of IpAppConfCall
interface might be defined for this purpose.

The SIP conference requests mean to express the minimum
interval between receiving state change reports. To allow
applications to specify the minimum state changes reporting
interval a ‘minReportingInterval()’ method of IpConfCall-
ControlManager interface might be defined.

Reserved conferences and ad hoc conferences may have a
time limit. The conferencing system must inform timely
participants when the limit is approaching and may allow the
extension of the conference duration.

F. Focus role migration

OSA Conference call Control API does not provide means
for delegating focus role by the current focus to another
participant. It is not possible for applications to request a
conference focus to transfer its role to different participant.

G. Side-bar conferencing

The application can create a new side-bar by invoking
‘createSubConference()’ method of IpConfCall interface.

50

IpSubConfCall interface provides methods for additional
grouping within a conference. Participants (conference call
legs) that are in the same side-bar have speech connection
with each other. The application can create a new side-bar and
move some participants to it by invoking ‘splitSub-
Conference()’ method. To merge two side-bars the application
uses ‘mergeSubConference()’ method. The application
invokes ‘moveCallleg()’ method to move a participant from
one side-bar to another side bar.

OSA Conference Call Control API does not provide means
for reporting that a new side-bar is created. A
‘subConferenceCreated()’ method of IpAppConfCall interface
might be defined.

V. OSA SUPPORT IN FLOOR CONTROL

Floor control enables applications or users to gain safe and
mutually exclusive or non-exclusive input access to the shared
object or resource. The floor is an individual temporary access
or manipulation permission for a specific shared resource (or
group of resources) [10]. Floor control is an optional feature
for conferencing applications. SIP conferencing applications
may also decide not to support this feature at all. Floor control
may be used together with the conference policy control
protocol or it may be used as an independent stand-alone
protocol, e.g. with SIP.

Conference owner is a privileged user who controls the
conference, creates floors, and assigns and deassigns floor
chairs. The conference owner does not have to be a member in
a conference. The OSA application in a role of conference
owner can indicate which participant in the conference is the
chair by invoking ‘chairSelection()’ method of IpSubConfCall
interface. To inform the application about the chair selection
requests from the network, ‘chairSelection()’ method of
IpAppSubConfCall interface is used, and then the application
can grant the requested.

Floor chair is a user (or an entity) who manages one floor
(grants, denies, or revokes floor). The floor chair does not
have to be a member in a conference. The OSA application in
a role of floor chair is informed about the floor requests from
the network by calling ‘floorRequest()’ method of IpAppSub-
ConfCall interface. The application can grant the request by
invoking the ‘chairSelection()’ method of IpSubConfCall
interface. Using ‘appointSpeaker()’ method of IpSubConfCall
interface, the application can indicate which of the
participants in the conference has the floor, and the video of
the speaker will be broadcast to the other parties. The
application can call ‘inspectVideo()’ method of
IpSubConfCall interface to select which video should be sent
to the party that is currently selected as the chair. To cancel a
previous ‘inspectVideo()’, the application calls
‘inspectVideoCancel()’ method, and then the chair will
receive the broadcasted video.

VI. CONCLUSION

Research presented in this article shows that OSA
Conference Call Control API supports most of the

requirements for SIP conferencing. Using the API, OSA
application can create and managed conferences, and group
participants in sub-conferences. Still there are some SIP
conferencing requirements that are not supported by OSA.
Examples include lack of means to inform the application that
conference policy has been changed, that sub-conference has
been created, or about approach of conference time limit.
There are no means in OSA to define minimum interval
between changes report which prevents application from
overload, and it is not possible to request hidden mode
participation.

While the SIP based Application Server only runs services
under some form of control by the IMS operator, the OSA
Application Server integrates the screening functions of the
OSA service capability server and offers the OSA interface to
the OSA application server running third party applications.
The standardized, extensible and scalable OSA interface
allows for inclusion of new functionality in the network with a
minimum impact on the applications using the OSA interface.
This provides application developers with a power tool in
designing new attractive multimedia services.

ACKNOWLEDGEMENT

The research is partially funded by the project 08024ni-7,
“Open Access to Telecommunication Resource Management
in Next Generation Networks”.

REFERENCES

[1] Rosenberg J., H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, E. Schooler, RFC 3261,
“SIP: Session Initiation Protocol”, 2002

[2] 3GPP TS 23.218, IP Multimedia (IM) session handling; IM
call model, v.7.7.1, 2007

[3] 3GPP TS 29.198-4-2 Open Service Access (OSA); Application
Programming Interface (API) Part 4: Call Control Sub-part 2:
Generic Call Control Service Capability Feature; v7.0.1, 2006

[4] 3GPP TS 29.198-4-3, Open Service Access (OSA);
Application Programming Interface (API) Part 4: Call Control
Sub-part 3:Multi-party Call Control Service Capability Feature;
v7.0.1, 2006

[5] 3GPP TS 29.198-4-4, Open Service Access (OSA);
Application Programming Interface (API) Part 4: Call Control
Sub-part 4:Multimedia Call Control Service Capability
Feature; v7.0.0, 2007

[6] 3GPP TS 29.198-04-05, Open Service Access (OSA);
Application Programming Interface (API) Part 4: Call Control
Sub-part 5:Conference Call Control Service Capability Feature;
v7.0.0, 2007

[7] 3GPP TR 29.998-04-5, Open Service Access (OSA); Mapping
for Open Service Access; Part 4: Call Control Service
mapping; Subpart 4: Multiparty Call Control ISC; v7.0.0, 2007

[8] Levin O., R. Even, RFC 4245, “High-Level Requirements for
Tightly Coupled SIP Conferencing”, 2005

[9] J.Rosenberg, RFC 4353, “A Framework for Conferencing with
the Session Initiation Protocol (SIP)”, 2006

[10] Koskelainen P., J. Ott, H. Schulzrinne, X. Wu, RFC 4376,
“Requirements for Floor Control Protocols”, 2006

51

