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Reduction of correction in Barrett’s algorithm

P. Stoianov'

Abstract—Modular operations are the basis for the most
commonly used asymmetrical cryptographic algorithms. Data
processing speed depends mainly on the high-precision
operations exponentiation operation and modulus.
Performance time is of great importance for SMART cards
where microcontrollers of lower clock frequency and of less
computational capacity are used. Montgomery’s and Barrett’s
algorithms are implemented for modular reduction. The paper
presents Barrett’s algorithm modified in terms of change of the
size of the calculations depending on the value of the modulus.
This leads to a reduction in the error resulting from rounding
and to a reduction in the number of correction operations to 1.
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etc) are implemented. Due to the availability of hardware
multipliers, single multi-digit multiplication takes less time
than division by an arbitrary divisor. An effective way of
reducing the time for multi-digit integer division is by
substituting the modulus with one divisible by the digital

word (2" at n > 2). In this case division is substituted only
with the operation of shifting and rotation.
Since (RN) = 1 is a necessary condition and R is

chosen to be 2" | the algorithm cannot be used with an even
number. A way of solving the problem is by decomposition of
the modulus and by the use of the Chinese remainder theorem
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I. INTRODUCTION

Cryptographic algorithms are based on a certain
mathematical function for ciphering (encryption) and
deciphering  (decryption). A code known to the
communicating parties using it or to the public (public key) is
used in ciphering. Cryptographic algorithms are called
“symmetrical” when the codes for ciphering and deciphering
are identical. Most commonly block ciphers (known as
Feietel ciphers) are implemented, e.g. Triple DES, IDEA [1].
When the codes are different, the algorithms are
“asymmetrical” referred to as “public-key algorithms”. The
advantage of asymmetrical algorithms is that they do not
require a secure channel for session key exchange. As the
processing time in asymmetrical algorithms is considerably
greater in comparison to symmetrical ones [6], public-key
algorithms are used for secret codes and symmetrical ones are
implemented for data communication.

The most popular asymmetrical algorithm RSA [2] was
created in 1977. As in other asymmetrical algorithms (e.g.
Diffie-Hellman for code exchange, ELGamal, etc), in RSA

the main operation is of the A “mod M type where A is the
radix, E is the power and M is the modulus. For correct
deciphering 1t 1s necessary that A<M. For RSA [2], it was
initially recommended that the digit capacity of M was not
greater than 200 decimal digits.

At present, owing to the increased computational
capabilities of cryptoanalysis, a code with a digit capacity of
up to 2048 bits (more than 600 decimal digits) i1s used.

For faster computation of A mod M algorithms for
multi-digit multiplication (Karatsuba — Ofman [7], Comba)

and algorithms for exponentiation (K-ary, Sliding Window
[8]:
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[4].

With Barrett’s algorithm a pre-calculation of b*" /m is
performed, where n is the digit capacity of the modulus. First,
the integer part is calculated and then the remainder. A
disadvantage of this algorithm is that in some cases the exact
integer part cannot be obtained. Correction in the result is
necessary by maximum two comparisons and two
subtractions causing an increase in the processing time.

Tt is worth noting that these algorithms are effective in
performing multiple operations with an arbitrary radix and
identical modulus, all this being typical of asymmetrical
cryptographic algorithms. With single operations they are
relatively slower than traditional division because of the pre-
calculations. A more detailed analysis and comparison of
three algorithms, 1.e. classical, Montgomery’s and Barrett's, is
suggested by A. Bosselaers et al. [10].

II. OVERVIEW OF MODULAR REDUCTION
ALGORITHMS

The modular reduction operation, a¢ mod m, is
conventionally accomplished by dividing a by m to obtain the
remainder. The steps of the division algorithm can be
modified in order to speed up the process. Reducing the time
and memory complexities of this operation is a problem on
which relies the practical feasibility of the cryptosystem’s
signature and encryption methods.

The classical algorithm for modular reduction is a
formalization of the ordinary pencil-and-paper method for
finding the quotient and the remainder. Each step of this
algorithm consists of estimating one digit quotient g, using
the most significant digits of z and », subtracting gn from z
and correcting the resulting error. Thus the core of this
algorithm is to estimate the quotient g as accurately as
possible.
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When n,_, \‘EJ we can see that the estimation of g by

dividing the three most significant digits of z by the two most



significant digits of » results in at most one error. This error
occurs with approximate probability z

There are several variations of the classical
algorithm with slightly different ways of quotient estimation

[11].

Barret presented a method for estimating the whole quotient g
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Let u= \‘—J , which can be recomputed for a given .
1)

Then the quotient can be estimated as
q{b_J Withu=#%J- weli—1:k-1],

which can be viewed as an integer counterpart of the floating
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The estimate ¢ is at most two smaller than the
correct ¢ . This can be seen from the inequalities
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Therefore, we can obtain z mod » by subtracting gn
mod b from Z[f{ ; O]and then adjusting the result with at
most two subtractions of » There is no need of full
multiplication of p and Z[] —1:k- 1], since we do not need

the lower k+1 digits of the product. The total number of
multiplications required by Barret’s algorithm is at most
k(k+4).

In Montgomery’s algorithm [3] for T mod N computation a
radix of R=b" is chosen, with (R, N) = 1 u R>N. N’ is pre-

calculated so that RR ™' - NN° = 1 (RR_1 =1mod N). By
using the function REDC(T) one can find:

X=TR ™ mod N = (THTN’ mod R)N)/R.
For determining the actual T mod N the function is repeated
once again using substitution REDC (X mod N)R * mod N).
Suggested and analyzed are diverse variations based on
this method [9].

Obviously, Montgomery’s algorithm is not efficient for
just a few modular multiplications, due to the relatively large

overhead involved in argument transformations. When is used
for modular exponentiation, this algorithm is efficient enough
to compensate for such overhead To compute

y=xd modn with Montgomery reduction, we first

3'=x“modn and then do

exponentiation with this number in a usual way.

Montgomery reduction can be performed in k(k+1)
multiplications, superior to Barret’s algorithm which requires
k(k+4) multiplications. However, we have to note, that this
number independent of the size of the target number z. This
means that with Montgomery’s algorithm we have to carry
out the same number multiplications even for one digit
reduction. It is thus obvious that we had better use the
classical algorithm or Barret’s algorithm for modular
multiplications involving small numbers.

compute Montgomery

III. MODIFIED BARRETT’S ALGORITHM

Paul Barrett suggests an original algorithm for modulus
reduction at X = A mod M calculation. The authors suggest
replacing the integer division with operations requiring less
processing time.

The expression for obtaining the remainder

i
X=A-M*|—=
M

is changed into X = A - M * (A *R).

For calculating the result two multiplication operations
and one subtraction are performed. The problem i1s that R 1s
less than 1 and it is necessary to work with a floating point.

b 2n
To represent R as an integer a pre-calculation of R = \‘V

1s carried out, where b is the
radix and n is the digit capacity of the modulus.
The integer part is calculated by the expression

- A b 1
Y = O [ ]
\‘bn—lJ \‘ A ( J bn+1 (1)

According to Barrett, the result X is always less than
(3M — 1). Therefore, at most two subtractions are necessary

for result correction. In 90% of the cases X is less than M

and only in 1 % X is greater than 2M [5,10].
Inaccuracy 1s caused by the elimination of the remainder in

A J p
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The expression of calculating ﬂ may be written in the

the integer divisions {

following way:
2n
A,

- at b" <M <b"
bnl M bn+l

501



por Ao LRGP R
or = an = =
b Lyt M T M
R2
bt + +—)*
we 0 am(Q b”l) (Q I, ) i
“(Q,Q,+Q, N @, RELBEL
i 3 M M bn 1 lbr’i+l
-(qq,rq 2 A L
172 1M M bn—l bn+1
=(Q,Q, *+Q N @
1 M M bn+1
It is necessary to correct the result a
Q Q modbn+1+(Q RZ + 1 Rl bn+1) L =1 (3)
1 2 M M bn+1
AsA<MZ?and b" < M < B",
then
Q 2 g M R M (4)
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The maximum possible error in computing the integer part
is Y—f£3—bil

Therefore, at most 2 carrections of the result are necessary.
The ratio between the maximum values of

R, R,
Ql.ﬁ and ﬁ b depends on the modulus value.

b
For Q1 Ly <b"" and

R i I =
Mlb”“ <2b ( R'<b ' and replacing M).

b” RZ b”*‘l Rl n+l
For M<—, Q —= < and —b"" <«
2 "M

b™ (seen from equation 5).
In the general case it could be written as follows:

Zn—p+s
so| A |2 L1 ©
bn—p M bn+s

n

For M > —, and for reducing the error Q , —2 s
2 M

substituted with p=1 and s=2. In this case we obtain
RZ Rl n+l ]-
QLT Ty e
The maximum error probability in calculating the
integer part is
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Y_}_;<(bn+2+bn+l+2bn+1)* 1 =1+§ <2

bn+2 b
for b>3 (7
For M < . and reducing the error in — L™t

in (5) substitution with p=2 and =2 is performed.
In this case the error is
n+2
1

Y- }}<(brz+2+ +bn+1)*
4 bn+2

=1+l+l<2 (8)
4 b

Therefore, when increasing the digit capacity of Q,

or Q , b times, the correction of the result of the modulus

calculation at most 1. The original Barrett’s choice (1) 15 p =1
and s =1.

For computing X = A mod M the following algorithm
is suggested:

Input: A=(a ao)b and

2y B
M=(m ..m m ),0SA<M’  3<b
-1 170
Output . X =(x by XX o)b
1. Pre-calculation of R

bn 2n+l
11 If M=> then R <« ,f
2 M

2n
«0 elseR <« e
M

2. Calculation of the integer part Y

A
21 If £=0 then YIFL IJ else
B"

A
n e ||

3. Computation of the remainder X
31 X, < Amodb™

32 X, < (Y*M)modb™

33 X «X,-X,
4. Correction of the result X

41 If X 2M then X «— X -M

In step 1 R is calculated, the floating point being
substituted with a fixed point. The value of M is venfied



only once at the beginning and the result is stored in the flag
f.

Step 2 determines the integer part, with the
verification in 2.1 referring to the condition of only one bit.
In step 3 the remainder is determined.

It is possible that X, < X, ( for example 990000
mod 999), but since always A=( Y * M) a verification may
not be performed (algorithm 14.42 step 3 [11] and in the
subtraction in 3.3 the borrow of nt2 digits is neglected. In
step 4 the actual value of X is determined.

According to {7) and (8) there are two possibilities:

eithar X =X orX =X +1.

A, Examples

(iven are two examples with a radix b=10 and n=3 with
values of A and M deliberately chosen to yield a greater error.
As in Barrett’s algorithm the calculation of Y does not depend

onAmodb”_l, 107 values of A =
(a5 . a,00), + (a5 . a,99),, are analyzed.

i

b
Example 1: for M<7 A:(165ala M=129,

0)10 2

J=128

1
—— is pre-calculated.
129

16500 16599

— | = 127,
{ 129 J { 129

In the original Barrett’s algorithm
10° 3
129

For all values of A the result obtained 1s

{165ag%_‘*{1000000J 5

100 129
The maximum error (3) is

TI51 +

I =127
10000

16599
-Y <17

We can see that 88 values of A (16512 +16599) necessitate a
result correction by 1 and 12 values of (16500+16511)

give Y = ¥, no correction being required.
3

In the algorithm suggested, since M < T (=1 n step 2.1),
165a,a, 1000000 1

Y= * * .
10 129 10000

Only for 8 values of A (16512 +16519) a result correction by

1 is required; for the remaining 92 values, Y = ¥ without any
correction.

i

Example 2: for M=

938800 938899
M=969, | ————| = 968, | ———— | = 968
969 969

According to Barrett’s algorithm we obtain

A:(QSSSalao)m,
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10° 961
= = 1031 + —— For all values of A,
969
9388a,a, 1000000 1
v = ® * =067
100 969 10000
038899

The maximum error (3) is -Y <11

For all values of A (16500+ 16599) correction of the result
3

by 1 is necessary. In the algorithm suggested, as M > 7
{ (=0 1in step 1.1), then
{9388ag%J {10000000J
sk k

100 969
For all values of A, result is Y = ¥ without any correction.

1
10000

IV. CONCLUSIONS

The modified algorithm suggested has the basic
advantage of correction reduction for obtaining the actual
value of A mod M in Barrett’s algorithm. Depending on the
modulus value the digit capacity of the computations is
increased. It was proved that the maximum error in this case
18 1.25 + 1/b. The examples given show the difference
between the original algorithm and the one suggested in the

paper.
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