

An Approach to Flow Control Based on Combined
Adaptive Algorithm in Communication Networks

Georgi V. Hristov1 and Teodor B. Iliev2

Abstract – Due to the fundamental end – to – end design
principle of the TCP/IP for which the network cannot supply any
explicit feedback, today TCP congestion control algorithm
implements an additive increase multiplicative decrease (AIMD)
algorithm. It is widely recognized that the AIMD mechanism is
at the core of the stability of end – to – end congestion control. In
this paper we describe a new algorithm we call Adaptive AIMD.
The key concept of the adaptive behavior mechanism is to adapt
to predicted network resource. We derive a mathematical model
of the throughput of the MAIMD, that shows that TCP AIMD is
stable, is friendly to Reno and increases the fairness in
bandwidth utilization.

Keywords – AIMD, TCP, Congestion Control,

I. INTRODUCTION

Congestion in computer networks is becoming an important
issue due to the increasing mismatch in link speeds caused by
intermixing of old and new technology. Recent technological
advances such as local area networks (LANs) and fiber optic
LANs have resulted in a significant increase in the bandwidths
of computer network links. However, these new technologies
must coexist with the old low bandwidth media such as the
twisted pair. This heterogeneity has resulted in a mismatch of
arrival and service rates in the intermediate nodes in the
network causing increased queuing and congestion [1].

Traditional congestion control schemes help improve
performance after congestion has occurred. The point at which
the packets start getting lost is called a cliff due to the fact that
the throughput falls off rapidly after this point. We use the
term knee to describe the point after which the increase in the
throughput is small, but when a significant increase in the
response time results.

A scheme that allows the network to operate at the knee is
called a congestion avoidance scheme, as distinguished from a
congestion control scheme that tries to keep the network
operating in the zone to the left of the cliff. A properly
designed congestion avoidance scheme will ensure that the
users are encouraged to increase their traffic load as long as
this does not significantly affect the response time, and arc
required to decrease them if that happens. Thus, the network
load oscillates around the knee [2, 3].

II. CRITERIA FOR SELECTING CONTROLS

The key criteria are: efficiency, fairness, distributedness,
and convergence. We define them formally as follows:

1. Efficiency: The efficiency of a resource usage is defined
by the closeness of the total load on the resource to its knee. If
Xgoal denotes the desired load level at the knee, then the
resource is operating efficiently as long as the total allocation
() ()∑ txtX i is close to Xgoal. Overload (X(t)>Xgoal) or

underload (X(t)<Xgoal) are both undesirable and are considered
inefficient. We consider both as equally undesirable.

Notice, that efficiency relates only to the total allocations
and thus two different allocations can both be efficient as long
as the total allocation is close to the goal. The distribution of
the total allocation among individual users is measured by the
fairness criterion [1].

2. Fairness: The fairness criterion has been widely studied
in the literature. When multiple users share multiple
resources, the maxmin fairness criterion have been widely
adopted [2,4,5]. Essentially, the set of users are partitioned
into equivalent classes according to which resource is their
primary bottleneck. The maxmin criterion then asserts that the
users in the same equivalent class ought to have the equal
share of the bottleneck. Thus, a system in which xi(t)=xj(t)

ji,∀ sharing the same bottleneck is operating fairly. If all
users do not get exactly equal allocations, the system is less
fair and we need an index or a function that quantifies the
fairness. One such index is [5]:

 () ()
()∑
∑= 2

j

i

xn

x
xF (1)

This index has the following properties:
 The fairness is bounded between 0 and 1 (or 0% and

100%). A totally fair allocation (with all xi’s equal) has a
fairness of 1 and a totally unfair allocation (with all resources
given to only one user) has a fairness of 1/n which is 0 in the
limit as n tends to ∞;

 The fairness is independent of scale, i.e., unit of
measurement does not matter.

 The fairness is a continuous function. Any slight
change in allocation shows up in the fairness.

 If only k of n users share the resource equally with
the remaining n-k users not receiving any resource, then the
fairness is k/n. 1Georgi V. Hristov is with the Department of Communication

Systems and Technologies, 8 Studentska Str., 7017 Ruse, Bulgaria,
E-mail: ghristov@mbox.contact.bg

2Assis. Prof. Ph.D Eng. Teodor B. Iliev is with the Department of
Communication Systems and Technologies, 8 Studentska Str., 7017
Ruse, Bulgaria, E-mail: tiliev@ecs.ru.acad.bg

3. Distributedness: The next requirement that we put on the
control scheme is that it be distributed. A centralized scheme
requires complete knowledge of the state of the system. For
example, we may want to know each individual user's demand

56

or their sum. This information may be available at the
resource. However, conveying this information to each and
every user causes considerable overhead, especially since a
user may be using several resources at the same time. We are
thus primarily interested in control schemes that can be
implemented in real networks and, therefore, we assume that
the system does the minimum amount of feedback. It only
tells whether it is underloaded or overloaded via the binary
feedback bits. Other information such as Xgoal and the number
of users sharing the resource are assumed to be unknown by
the users. This restricts the set of feasible schemes. We,
therefore, describe the set of feasible schemes with and
without this restriction [5].

4. Convergence: Finally we require the control scheme to
converge. Convergence is generally measured by the speed
with which (or time taken till) the system approaches the goal
state from any starting state. However, due to the binary
nature of the feedback, the system does not generally
converge to a single steady state. Rather, the system reaches
an "equilibrium" in which it oscillates around the optimal
state. The time taken to reach this "equilibrium" and the size
of the oscillations jointly determine the convergence. The time
determines the responsiveness, and the size of the oscillations
determine the smoothness of the control. Ideally, we would
like the time as well as oscillations to be small. Thus, the
controls with smaller time and smaller amplitude of
oscillations are called more responsive and more smooth,
respectively, as shown in Fig. 1.

Goal

Responsi-
veness

Time

To
ta

l l
oa

d
on

 th
e

ne
tw

or
k

Sm
oo

th
ne

ssrt

Fig.1 Responsiveness and smoothness

III. THE AIMD CONTROL ALGORITHM

The Additive Increase/Multiplicative Decrease (AIMD)
algorithm is described in detail in [6] and is referred as
“dynamic window adjustment” in [7]. The basic idea of the
algorithm is to reduce the sending rate/window of the flows
when the system bandwidth is exhausted and to increase the
sending rates/windows when bandwidth is available. As
mentioned in the previous section, when bandwidth is
available (i.e. the aggregate rates of the flows do not exceed
the network threshold: [6]) the system attaches

the signal 1 to the acknowledgment of each packet. In
response, flows increase by one (packet) their windows. A
continuous series of positive signals will cause a linear
increase in the flows’ rate. Obviously, the increase is not
unlimited because the bandwidth is fixed. When flows’ rate
exceed the bandwidth limit (i.e. ∑) the system
attaches the 0 signal to the acknowledgment of each packet
and flows respond to congestion by a decrease in their sending
rates/windows.

∑ < goali Xω

≥ goali Xω

Authors in [6] prove that a linear increase/exponential
decrease policy is a condition for the increase/decrease
algorithms to set (or converge) quickly the system in a fair
state where the load oscillates around some equilibrium. The
equilibrium state determines also the fairness and efficiency
of the mechanism.

The convergence behavior of a two flow AIMD system is
depicted by vectors in a 2- dimensional space oscillating
around the efficiency line (or equilibrium) in Fig. 2. Upon
each multiplicative decrease, the two windows x1 and x2 move
closer to the fairness line (x1=x2). More details on the
convergence of AIMD can be found in [6].

Window of flow 1

Window of flow 2

Efficiency line

kx +2

1x

2x

kx +1

Cliff

Fig.2 Vectorial representation of two-flow convergence to fairness.

Fig. 2 shows the convergence behaviour of a two-flow

AIMD system. It can be seen that the vector that traces the
sum of the windows is in parallel with the fairness line when
the flows increase their rates, and points towards the origin of
the axes when flows apply exponential decrease. Another tip
that we can grasp from this figure is that the projections of the
vector parallel to the fairness line on the x and y axis are
equal. The practical importance of this is that during linear
increase phase both flows widen their windows by the same
amount.

Assume a two flow system with capacity Xgoal and let
W=Xgoal/MSS (MSS is the packet size), be the maximum
number of packets that the system can store per step or RTT
(W coincides with the cliff line in the Fig.2). Let the flows f1
and f2 have x1 and x2 initial resources (x1, x2∈N) respectively.
Without loss of generality we assume that x1<x2 and x2+x2<W.
Let the additive parameter be aI=1 and multiplicative decrease
parameter be bD=1/2. A simple convergence scenario follows:

Flow f1 Flow f2

57

4 34 21
1

1...11
11

1

1

1

1

1

k
x
x
x
x

++++
++

+

4 34 21
1

1...11
11

1

2

2

2

2

k
x
x
x
x

++++
++

+

∑ ≥+ Xkw)(State: Wkxx ≥++ 121 2
Action: Multiplicative decrease

434 21
2

1...1
22

1
22

2

11

11

11

k

kx

kx

kx

++++

++

+

434 21
2

1...1
22

1
22

2

12

12

12

k

kx

kx

kx

++++

++

+

∑ ≥+ Xkw)(State: Wkkxx
≥+++ 21

21 2
22

Action: Multiplicative decrease

jxxx kkkx

kkx

++++

++

...

2
22

244

2
lg

2
lg

1
lg

1

211

22

Μ

jxxx kkkx

kkx

++++

++

...

2
22

244

2
lg

2
lg

1
lg

2

212

22

Μ

It can be seen from this numerical example that two flows

running the AIMD algorithm will converge to fairness after
1+lgx2 cycles. In general, if the multiplicative decrease
parameter is bD=1/β and x1 and x2 are the initial windows of
two flows then these flows will converge to fairness in

 cycles or O()(1,maxlog 21 +xxβ) ()WW βlog steps because
of the linear increase.

Based on the above example, below is presented a
pseudocode for AIMD algorithm and an example of a
distributed algorithm for an AIMD-based system of m flows.
A new feature of this pseudocode is that it distinguishes the
amount by which the window of the flow has widened during
additive increase phase. This amount is symbolized as k and it
can be easily noticed in Fig. 2 and in the above example.
Resources consumed by the flows (i.e. congestion window)
are represented by the vector/tuple (mωωω ,...,, 21), where the
ith element of the vector represents the congestion window of
flow i. Note that the AIMD-System’s pseudocode is used to
describe the system behaviour and is not executed by one
single entity.
 P1(w,k,dw){
 while (feedback==1)do
 {
 k:=k+a;
 }
 dw:=1/2(w+k);
 w:=dw;
 return (w,k,dw);
 }
System ((x1,x2,…,xm),m,n)
 i:=1
 if (i<m)
 { w[i]:=x[i];
 i:=i+1; }
 j:=1; i:=1;

 if (j<n)
 { if (i<m)
 {w[i]:=P1(w[i]);
 i:=i+1;}
 j:=j+1;}
return (w1,w2,…,wm)

In Table 1 we show the notation of AIMD algorithm.

TABLE I
AIMD ALGORITHM NOTATION.

xi Initial window of flow i.
k Resources consumed by additive increase
ω The value of the window immediately after

the multiplicative decrease
k+ω Current window of a flow (k≥0)

n Integer. Represents the number of cycles
towards convergence.

m Integer. Represents the number of flows.
aI The additive increase rate (aI=1)
bD The multiplicative decrease ratio (bD=1/2)

Based on this observation, we can define fairness in the
context of the AIMD system functionality:

A system of m flows S(f1, f2,…,fm), where fi is the flow i and
iω is its corresponding instantaneous throughput, converges

to fairness in n cycles if mωωω ,...,, 21 become equal exactly
at the nth cycle.

IV. MODIFIED AIMD ALGORITHM

The AIMD mechanism has been proved in practice to be
reliable (at least from congestion avoidance perspective), a
little attention has been given to the dynamics of this
algorithm. It is suggested that the bandwidth utilization of this
algorithm be improved with buffer provisioning at the routers.
Furthermore, these suggested methods do not consider the
problem of how fast the link can be filled with data. The
responsiveness and smoothness of this algorithm is studied in
[6] and a little attention is given to each component of this
mechanism.

The first component, multiplicative decrease, releases from
the window those estimated shares that are not known to other
flows (i.e. a sequence of multiplicative decreases will nullify
those shares). The second component, additive increase,
guarantees that the new resources that are used are estimated
fairly.

Assume that two flows f1 and f2 at time t enter the system
with windows x1 and x2 (x1<x2 and x1+x2<W). The flows start
consuming resources (additively) from the system and at time
t+δt, the system notifies the flows to release resources
(x1+x2+2k≥W). Since both flows f1 and f2 evolve with the same
additive increase parameter, from time t to time t+δt they
consume exactly k resource units, each. When the system
resources are exhausted the flows essentially release resources
(i.e. multiplicative decrease) from the initial windows x1 and
x2 which were allocated unfairly. So, our algorithm suggests
to decrease multiplicatively (to half the previous size) the
windows x1 and x2 alone. On the base of this conclusion we
can modified the AIMD algorithm.

58

The algorithm of the Modified AIMD (MAIMD) system
can be described as follows:
 P2(w,k,dw){
 while (feedback==1)do
 {
 k:=k+a;
 }
 dw:=1/2w+k;
 w:=dw;
 return (w,k,dw);
 }
System ((x1,x2,…,xm),m,n)
 i:=1
 if (i<m)
 { w[i]:=x[i];
 i:=i+1; }
 j:=1; i:=1;
 if (j<n)
 { if (i<m)
 {w[i]:=P2(w[i]);
 i:=i+1;}
 j:=j+1;}
return (w1,w2,…,wm)

The AIMD itself can not be applied when the window is
equal to one byte/segment/packet. Consider a single flow
system, the decrease window of this flow is ω and assume
that prior to congestion resources were allocated in
additive increase. Therefore,

Iak ×
Wak I ≥×+ω . The ensuing

phase of multiplicative decrease will produce a reduction of
resource utilization at:

 Iakww ×+←
2

 (2)

MAIMD can only be applied if:

 (3) Iaw 2≥

V. SIMULATION RESULT

10
-4

10
-3

10
-2

10
-1

10
0

0

1

2

3

4

5

6

7

8

9
x 10

5

p

Th
p,

 b
its

Thp(p)

AIMD RTT 100ms
MAIMD RTT 100ms
AIMD RTT 300ms
MAIMD RTT 300ms

Fig.3 Performance of the ТСР AIMD and TCP MAIMD

In our experiments we have used two TCP flows with

AIMD and MAIMD algorithms. On Fig.3 we show the
performance of the TCP MAIMD and TCP AIMD with
different RTT. Fig.4 shows the investigation where we adjust
TCP MAIMD parameters, and keep TCP AIMD at the default
values as a reference for comparison.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1000

2000

3000

4000

cw
nd

TCP AIMD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

2000

4000

6000

8000

10000

cw
nd

TCP MAIMD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

t,s

Congestion Distribution

TCP AIMD

TCP MAIMD

cong

Fig.4 Congestion window evolution

VI. CONCLUSION

Placing side by side the multiplicative decrease functions of
AIMD and MAIMD we notice that MAIMD augments its
window by a well-known factor: ½k. This improves its
fairness and efficiency and suggests that augmenting the
windows after multiplicative decrease, by a well-known
increase factor, leads to enhanced efficiency and faster
convergence to fairness. From the conducted simulation we
can see that the efficiency of MAIMD is 8% higher than the
efficiency of AIMD.

ACKNOWLEDGEMENT

This work is a part of the research project ВУ-ТН-105/2005
of Bulgarian Science Fund at Ministry of Education and
Science.

REFERENCES

[1] E. Gafni and D. Bertsekas, “Dynamic control of session input
rates in communication networks”, IEEE Trans., Automation
Control, vol.28, pp. 1090 – 1096, 1984

[2] H, Hayden, Voice Flow Control in Integrated Packet Networks,
MIT, M.S. Thesis, MIT Technical Report LIDS-TH-1152, 1981.

[3] B. P. Tsankov, A. A. Aliazidi, “Connection Control in ATM
Networks”, TELECOM’92, Conference Proceeding, pp. 205-
210, Varna, Bulgarian, 1993

[4] J.M. Jaffe, “Bottleneck Flow Control”, IEEE Trans. on
Communications, vol. 29, pp. 954-962, 1981

[5] K.K. Ramakrishnan, D.M, Chiu and R. Jain, Congestion
Avoidance in Computer Networks with a Connectionless
Network Layer, Part IV-A Selective Binary Feedback Scheme
for General Topologies, Technical Report DEC TR-509, Digital
Equipment Corporation, 1987.

[6] D. Chiu and R. Jain. “Analysis of the Increase/Decrease
Algorithms for Congestion Avoidance in Computer Networks”.
Journal of Computer Networks and ISDN, 17(1), pp.1–14, 1989.

[7] V. Jacobson. “Congestion Avoidance and Control”,
SIGCOMM’88, Conference Proceedings, pp. 314–329, 1988.

59

