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Abstract – Due to the fundamental end – to – end design 
principle of the TCP/IP for which the network cannot supply any 
explicit feedback, today TCP congestion control algorithm 
implements an additive increase multiplicative decrease (AIMD) 
algorithm. It is widely recognized that the AIMD mechanism is 
at the core of the stability of end – to – end congestion control. In 
this paper we describe a new algorithm we call Adaptive AIMD. 
The key concept of the adaptive behavior mechanism is to adapt 
to predicted network resource. We derive a mathematical model 
of the throughput of the MAIMD, that shows that TCP AIMD is 
stable, is friendly to Reno and increases the fairness in 
bandwidth utilization. 
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I. INTRODUCTION 

Congestion in computer networks is becoming an important 
issue due to the increasing mismatch in link speeds caused by 
intermixing of old and new technology. Recent technological 
advances such as local area networks (LANs) and fiber optic 
LANs have resulted in a significant increase in the bandwidths 
of computer network links. However, these new technologies 
must coexist with the old low bandwidth media such as the 
twisted pair. This heterogeneity has resulted in a mismatch of 
arrival and service rates in the intermediate nodes in the 
network causing increased queuing and congestion [1]. 

Traditional congestion control schemes help improve 
performance after congestion has occurred. The point at which 
the packets start getting lost is called a cliff due to the fact that 
the throughput falls off rapidly after this point. We use the 
term knee to describe the point after which the increase in the 
throughput is small, but when a significant increase in the 
response time results. 

A scheme that allows the network to operate at the knee is 
called a congestion avoidance scheme, as distinguished from a 
congestion control scheme that tries to keep the network 
operating in the zone to the left of the cliff. A properly 
designed congestion avoidance scheme will ensure that the 
users are encouraged to increase their traffic load as long as 
this does not significantly affect the response time, and arc 
required to decrease them if that happens. Thus, the network 
load oscillates around the knee [2, 3]. 

II. CRITERIA FOR SELECTING CONTROLS 

The key criteria are: efficiency, fairness, distributedness, 
and convergence. We define them formally as follows: 

1. Efficiency: The efficiency of a resource usage is defined 
by the closeness of the total load on the resource to its knee. If 
Xgoal denotes the desired load level at the knee, then the 
resource is operating efficiently as long as the total allocation 
( ) ( )∑ txtX i  is close to Xgoal. Overload (X(t)>Xgoal) or 

underload (X(t)<Xgoal) are both undesirable and are considered 
inefficient. We consider both as equally undesirable. 

Notice, that efficiency relates only to the total allocations 
and thus two different allocations can both be efficient as long 
as the total allocation is close to the goal. The distribution of 
the total allocation among individual users is measured by the 
fairness criterion [1]. 

2. Fairness: The fairness criterion has been widely studied 
in the literature. When multiple users share multiple 
resources, the maxmin fairness criterion have been widely 
adopted [2,4,5]. Essentially, the set of users are partitioned 
into equivalent classes according to which resource is their 
primary bottleneck. The maxmin criterion then asserts that the 
users in the same equivalent class ought to have the equal 
share of the bottleneck. Thus, a system in which xi(t)=xj(t) 

ji,∀  sharing the same bottleneck is operating fairly. If all 
users do not get exactly equal allocations, the system is less 
fair and we need an index or a function that quantifies the 
fairness. One such index is [5]: 
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This index has the following properties: 
 The fairness is bounded between 0 and 1 (or 0% and 

100%). A totally fair allocation (with all xi’s equal) has a 
fairness of 1 and a totally unfair allocation (with all resources 
given to only one user) has a fairness of 1/n which is 0 in the 
limit as n tends to ∞; 

 The fairness is independent of scale, i.e., unit of 
measurement does not matter. 

 The fairness is a continuous function. Any slight 
change in allocation shows up in the fairness. 

 If only k of n users share the resource equally with 
the remaining n-k users not receiving any resource, then the 
fairness is k/n. 1Georgi V. Hristov is with the Department of Communication
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3. Distributedness: The next requirement that we put on the 
control scheme is that it be distributed. A centralized scheme 
requires complete knowledge of the state of the system. For 
example, we may want to know each individual user's demand 
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or their sum. This information may be available at the 
resource. However, conveying this information to each and 
every user causes considerable overhead, especially since a 
user may be using several resources at the same time. We are 
thus primarily interested in control schemes that can be 
implemented in real networks and, therefore, we assume that 
the system does the minimum amount of feedback. It only 
tells whether it is underloaded or overloaded via the binary 
feedback bits. Other information such as Xgoal and the number 
of users sharing the resource are assumed to be unknown by 
the users. This restricts the set of feasible schemes. We, 
therefore, describe the set of feasible schemes with and 
without this restriction [5]. 

4. Convergence: Finally we require the control scheme to 
converge. Convergence is generally measured by the speed 
with which (or time taken till) the system approaches the goal 
state from any starting state. However, due to the binary 
nature of the feedback, the system does not generally 
converge to a single steady state. Rather, the system reaches 
an "equilibrium" in which it oscillates around the optimal 
state. The time taken to reach this "equilibrium" and the size 
of the oscillations jointly determine the convergence. The time 
determines the responsiveness, and the size of the oscillations 
determine the smoothness of the control. Ideally, we would 
like the time as well as oscillations to be small. Thus, the 
controls with smaller time and smaller amplitude of 
oscillations are called more responsive and more smooth, 
respectively, as shown in Fig. 1. 
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Fig.1 Responsiveness and smoothness 

III. THE AIMD CONTROL ALGORITHM 

The Additive Increase/Multiplicative Decrease (AIMD) 
algorithm is described in detail in [6] and is referred as 
“dynamic window adjustment” in [7]. The basic idea of the 
algorithm is to reduce the sending rate/window of the flows 
when the system bandwidth is exhausted and to increase the 
sending rates/windows when bandwidth is available. As 
mentioned in the previous section, when bandwidth is 
available (i.e. the aggregate rates of the flows do not exceed 
the network threshold:  [6]) the system attaches 

the signal 1 to the acknowledgment of each packet. In 
response, flows increase by one (packet) their windows. A 
continuous series of positive signals will cause a linear 
increase in the flows’ rate. Obviously, the increase is not 
unlimited because the bandwidth is fixed. When flows’ rate 
exceed the bandwidth limit (i.e. ∑ ) the system 
attaches the 0 signal to the acknowledgment of each packet 
and flows respond to congestion by a decrease in their sending 
rates/windows. 

∑ < goali Xω

≥ goali Xω

Authors in [6] prove that a linear increase/exponential 
decrease policy is a condition for the increase/decrease 
algorithms to set (or converge) quickly the system in a fair 
state where the load oscillates around some equilibrium. The 
equilibrium state determines also the fairness and efficiency 
of the mechanism. 

The convergence behavior of a two flow AIMD system is 
depicted by vectors in a 2- dimensional space oscillating 
around the efficiency line (or equilibrium) in Fig. 2. Upon 
each multiplicative decrease, the two windows x1 and x2 move 
closer to the fairness line (x1=x2). More details on the 
convergence of AIMD can be found in [6]. 
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Fig.2 Vectorial representation of two-flow convergence to fairness. 

 
Fig. 2 shows the convergence behaviour of a two-flow 

AIMD system. It can be seen that the vector that traces the 
sum of the windows is in parallel with the fairness line when 
the flows increase their rates, and points towards the origin of 
the axes when flows apply exponential decrease. Another tip 
that we can grasp from this figure is that the projections of the 
vector parallel to the fairness line on the x and y axis are 
equal. The practical importance of this is that during linear 
increase phase both flows widen their windows by the same 
amount. 

Assume a two flow system with capacity Xgoal and let 
W=Xgoal/MSS (MSS is the packet size), be the maximum 
number of packets that the system can store per step or RTT 
(W coincides with the cliff line in the Fig.2). Let the flows f1 
and f2 have x1 and x2 initial resources (x1, x2∈N) respectively. 
Without loss of generality we assume that x1<x2 and x2+x2<W. 
Let the additive parameter be aI=1 and multiplicative decrease 
parameter be bD=1/2. A simple convergence scenario follows: 

Flow f1 Flow f2
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It can be seen from this numerical example that two flows 

running the AIMD algorithm will converge to fairness after 
1+lgx2 cycles. In general, if the multiplicative decrease 
parameter is bD=1/β and x1 and x2 are the initial windows of 
two flows then these flows will converge to fairness in 

 cycles or O( )( 1,maxlog 21 +xxβ ) ( )WW βlog  steps because 
of the linear increase. 

Based on the above example, below is presented a 
pseudocode for AIMD algorithm and an example of a 
distributed algorithm for an AIMD-based system of m flows. 
A new feature of this pseudocode is that it distinguishes the 
amount by which the window of the flow has widened during 
additive increase phase. This amount is symbolized as k and it 
can be easily noticed in Fig. 2 and in the above example. 
Resources consumed by the flows (i.e. congestion window) 
are represented by the vector/tuple ( mωωω ,...,, 21 ), where the 
ith element of the vector represents the congestion window of 
flow i. Note that the AIMD-System’s pseudocode is used to 
describe the system behaviour and is not executed by one 
single entity. 
 P1(w,k,dw){ 
  while (feedback==1)do 
   { 
    k:=k+a; 
   } 
  dw:=1/2(w+k); 
  w:=dw; 
  return (w,k,dw); 
  } 
System ((x1,x2,…,xm),m,n) 
 i:=1 
 if (i<m) 
  { w[i]:=x[i]; 
  i:=i+1; } 
  j:=1; i:=1; 

 if (j<n) 
  { if (i<m) 
  {w[i]:=P1(w[i]); 
  i:=i+1;} 
 j:=j+1;} 
return (w1,w2,…,wm) 

In Table 1 we show the notation of AIMD algorithm. 

TABLE I 
AIMD ALGORITHM NOTATION. 

xi Initial window of flow i. 
k Resources consumed by additive increase 
ω  The value of the window immediately after 

the multiplicative decrease 
k+ω  Current window of a flow (k≥0) 

n Integer. Represents the number of cycles 
towards convergence. 

m Integer. Represents the number of flows. 
aI The additive increase rate (aI=1) 
bD The multiplicative decrease ratio (bD=1/2) 

Based on this observation, we can define fairness in the 
context of the AIMD system functionality: 

A system of m flows S(f1, f2,…,fm), where fi is the flow i and 
iω  is its corresponding instantaneous throughput, converges 

to fairness in n cycles if mωωω ,...,, 21  become equal exactly 
at the nth cycle. 

IV. MODIFIED AIMD ALGORITHM 

The AIMD mechanism has been proved in practice to be 
reliable (at least from congestion avoidance perspective), a 
little attention has been given to the dynamics of this 
algorithm. It is suggested that the bandwidth utilization of this 
algorithm be improved with buffer provisioning at the routers. 
Furthermore, these suggested methods do not consider the 
problem of how fast the link can be filled with data. The 
responsiveness and smoothness of this algorithm is studied in 
[6] and a little attention is given to each component of this 
mechanism. 

The first component, multiplicative decrease, releases from 
the window those estimated shares that are not known to other 
flows (i.e. a sequence of multiplicative decreases will nullify 
those shares). The second component, additive increase, 
guarantees that the new resources that are used are estimated 
fairly. 

Assume that two flows f1 and f2 at time t enter the system 
with windows x1 and x2 (x1<x2 and x1+x2<W). The flows start 
consuming resources (additively) from the system and at time 
t+δt, the system notifies the flows to release resources 
(x1+x2+2k≥W). Since both flows f1 and f2 evolve with the same 
additive increase parameter, from time t to time t+δt they 
consume exactly k resource units, each. When the system 
resources are exhausted the flows essentially release resources 
(i.e. multiplicative decrease) from the initial windows x1 and 
x2 which were allocated unfairly. So, our algorithm suggests 
to decrease multiplicatively (to half the previous size) the 
windows x1 and x2 alone. On the base of this conclusion we 
can modified the AIMD algorithm. 
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The algorithm of the Modified AIMD (MAIMD) system 
can be described as follows: 
 P2(w,k,dw){ 
  while (feedback==1)do 
   { 
    k:=k+a; 
   } 
  dw:=1/2w+k; 
  w:=dw; 
  return (w,k,dw); 
  } 
System ((x1,x2,…,xm),m,n) 
 i:=1 
 if (i<m) 
  { w[i]:=x[i]; 
  i:=i+1; } 
  j:=1; i:=1; 
 if (j<n) 
  { if (i<m) 
  {w[i]:=P2(w[i]); 
  i:=i+1;} 
 j:=j+1;} 
return (w1,w2,…,wm) 

The AIMD itself can not be applied when the window is 
equal to one byte/segment/packet. Consider a single flow 
system, the decrease window of this flow is ω  and assume 
that prior to congestion  resources were allocated in 
additive increase. Therefore, 

Iak ×
Wak I ≥×+ω . The ensuing 

phase of multiplicative decrease will produce a reduction of 
resource utilization at: 

 Iakww ×+←
2

 (2) 

MAIMD can only be applied if: 

  (3) Iaw 2≥

V. SIMULATION RESULT 
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Fig.3 Performance of the ТСР AIMD and TCP MAIMD 

 
In our experiments we have used two TCP flows with 

AIMD and MAIMD algorithms. On Fig.3 we show the 
performance of the TCP MAIMD and TCP AIMD with 
different RTT. Fig.4 shows the investigation where we adjust 
TCP MAIMD parameters, and keep TCP AIMD at the default 
values as a reference for comparison. 
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Fig.4 Congestion window evolution 

VI. CONCLUSION 

Placing side by side the multiplicative decrease functions of 
AIMD and MAIMD we notice that MAIMD augments its 
window by a well-known factor: ½k. This improves its 
fairness and efficiency and suggests that augmenting the 
windows after multiplicative decrease, by a well-known 
increase factor, leads to enhanced efficiency and faster 
convergence to fairness. From the conducted simulation we 
can see that the efficiency of MAIMD is 8% higher than the 
efficiency of AIMD. 
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