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Abstract – This paper discusses the synthesis of controllers, 

which can be structure-optimized through mathematically based 
selection of a functional. Relevant complex criterion for optimi-
zation has been introduced. The synthesis implements a combi-
nation between both- setting the closed-loop system poles (modal 
control) and optimal control through the quadratic quality crite-
rion minimization. Results from testing of DC motor drive sys-
tems with such optimal modal control have been represented.    
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I. INTRODUCTION 

 Modern electric drives are subject to high requirements 
such as precise accuracy and good dynamics, which predi-
cates the use of digital control devices. At the same time, 
growing demands to quality control, as well as the complexity 
of electromechanical systems determine the need to synthe-
size controllers of higher potential compared to the traditional 
PI, PD and PID types.  
 Optimal modal state controllers meet such requirements. 
Their synthesis may be carried out either through the ana-
logue mathematical model of the controlled object, with a 
subsequent discretization, or by means of the discrete model 
[1], [2], [4], [5]. 
 Synthesis of state controllers by the discrete model has a 
number of advantages: 
 - first, a stable closed-loop system is provided, with a pre-
defined quality;  
 - second, too small quantization period can be avoided thus 
eliminating the need of very fast microcontrollers. 
 This paper discusses some structurally optimized control-
lers, their synthesis being based on a mathematically selected 
functional. The procedure applied utilizes a combination be-
tween both - setting the closed-loop system poles (modal con-
trol) and optimal control through the quadratic quality crite-
rion minimization, i.e. a complex criterion for optimization 
has been introduced.  
 Detailed studies of DC motor drive systems carried out by 
means of modeling and computer simulation show that this 
type of control can provide the desire performance. 

II. VECTOR-MATRIX MODEL OF THE DC DRIVE   

 The state-space model of the DC motor drive under consi-
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deration can be described as follows: 
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(1) 
where: 0

* ωωω =  is motor speed represented in relative 

units; 0ω – ideal no-load speed; ( )0
* ωecc kVV =  – power 

converter voltage;  – back EMF coefficient; ek sciii =* – 
armature current represented in relative units; 

( ) Rki esc 0ω⋅=  – short circuit current; R – armature circuit 

resistance;  – control voltage of the power 
converter in relative units;  – amplifier gain of the con-

verter; 

]/0
*

ckuu ω=

ck
/[ ek

scl ii=li
*  – static current represented in relative units 

mτ  – electromechanical time-constant; aτ   – armature circuit 
time-constant;  cτ – converter time-constant. 
 The following notations of state variables have been 
adopted: , , . Measurable coordinate 
in this case is the motor angular speed 

*
1 ω=x *

2 ix = *
3 cVx =

ω , i.e.  
 

( ) (tCxty = ) ,  
 

where: [ ]0    0    1=C , [ ]321     T xxx=x . 
 The discrete state-space model of the controlled object can 
be represented as follows: 
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 In order to use the quadratic quality criterion in the process 
of synthesis, the error of should be 

formulated, where  is the reference speed in relative 
units.  

)()()( *** kkke r ωω −=

)(* krω

  It is assumed that both the reference and disturbance inputs 
are constant, i.e.  and . The follow-
ing equation concerns the error and state variables, which are 
not outputs [2]: 

const)(* =krω const* =li
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(3) 
or 
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 Eq. (3) has been used for the synthesis of both an optimal 
modal digital observer and the respective controller. Based on 
this equation the DC electric drive model has been developed 
(Subsystem 1), shown in Fig. 1.  

 

 
 

Fig. 1. Model of the controlled object (Subsystem 1). 
 

 The controlled object consists of a three-phase thyristor 
converter and a separately excited DC motor. The basic pa-
rameters are as follows:  
 , , Ω 69.1=R H 026.0=L s 0154.0=aτ , s 2759.0=mτ , 

, 2kg.m 0741.0=J radVs6737.0=ek , ANm6737.0=tk , 
s 005.0=cτ , . 23.24=ck

 The rated data of the used DC motor are: 
   kW, 4.3rat =P V, 220rat =V A, 6.17rat =I rad/s 314rat =ω . 

III. SYNTHESIS OF OPTIMAL MODAL OBSERVER 

 Synthesis of the digital observer will be realized by an al-
gorithm presented in [1]. This procedure utilizes the transpo-
sitioned additional object [3]: 
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 The  matrix eigenvalues are determined solving the 
following equation: 
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 For the eigenvalues the following is obtained: 
 

.8187.0;9407.0;9962.0;1 4311 ==== χχχχ  
 
 In this case an undesired root of the open-loop system  

11 =χ  exists, which must be displaced. A location for the 
closed-loop system root 5.01 =μ  is defined, where 1χ  should 
be placed.   
 In order to define the observer H matrix, it is necessary to 
find the  eigenvector elements, solving the system of ho-
mogeneous algebraic equations: 

1q

 
 1for   0)χ( ==− iii qIAe  (8) 
 
 For the elements of both eigenvector  and weight matrix 
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 These products are computed: 
 

[ ]0    0    0    1T
11

T =qqbe  and . 1T
11

T =ee bqqb
 
 Weight coefficient 21 =r  and the 21 =λ coefficient are 
calculated. 
 The respective optimal modal feedback gain is determined: 
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 As the undesired eigenvalue is only one in this case, the 
feedback gain is derived as follows:  
 

[ ]0   0   0   5.01
* −== γγ  
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 The observer feedback vector is formulated: 
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 The observer equation is as follows [3]:  
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where )(ˆ)()( kkke xCy −=Δ . 
 

 
 

Fig. 2. Model of the optimal modal observer (Subsystem 2). 
 

 These equations produce the state variables valuation. 
Based on them the optimal modal observer (Subsystem 2) has 
been developed, shown in Fig.2. 

IV. SYNTHESIS OF OPTIMAL MODAL CONTROLLER 

 Synthesis of the optimal modal controller will be realized 
by an algorithm shown in [2]. In this case synthesis is carried 
out based on equation (3). 
 The matrix eigenvalues are as follows: eA
 

.1;9407.0;9962.0;8187.0 4311 ==== χχχχ  
 
 Among these values an undesired root 14 =χ  exists, which 
should be displaced.  
  A root location 3333.04 =μ  of the close-loop system cha-

racteristic equation is defined, where the undesired open-
loop system eigenvalue 1χ  will be placed.  
 In order to determine the optimal modal controller matrix 
K  it is necessary to find the eigenvector  elements, solv-
ing the system of homogeneous algebraic equations.  
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 The elements of eigenvector  and weight matrix   
are obtained as follows: 
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 For these coefficients the following values are obtained:  

 and -6
4 10 x 7824.9=r λ =1.5.  

 The optimal modal feedback gain is determined: 
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 As there is only one undesired eigenvalue ( 14 =χ ), the 
optimal modal feedback gain is derived as follows:  
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  The feedback vector obtains this form: 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

==

3333.3
2563.10
2764.184

6667.0

K
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

k
k
k
k

 

 
and control of the following type is formulated: 
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V. SOME SIMULATION RESULTS  After substitution of in Eq. (4), for the optimal mo-
dal controller this expression is obtained:   

)(* kue

To prove the offered control algorithm functionality a 
computer simulation model has been developed, using the 
MATLAB/SIMULINK software package (Fig. 5).  

 

     (12) ( ) ( ) eeee xkxkxkxkkuku 44332211
** 1 ++++−=

  

 

 Based on Eq. (12) the controller model is constructed (Sub-
system 3), shown in Fig. 3. 

 

 
 
Fig. 3. Model of the optimal 
modal controller (Subsystem 3). 

  

 
 
Fig. 4. Model of the 
current limitation by 
overtaking (Subsys-
tem 4). 

Fig. 6. Time-diagrams illustrating the drive system performance.   
  Overtaking current limitation has been applied. The respec-

tive function is as follows:    Fig. 6 shows some simulation results illustrating the per-
formance of the drive system under consideration. The ap-
plied quantization period is . The reference motor 
speed is 

ms 10 =T
rad/s 163=rω  . The reference static current is equal 

to the rated value A 6.17rat =I , while the disturbances ap-
plied sequentially are %25+=liΔ  and %25−=liΔ . The 
starting current is limited to the maximum admissible value 

A 44max =I , which provides a maximum starting torque.  
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where:  is the current limitation initial code; – scale 
coefficient. 
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 Hence, the control condition in the presence of current 
limitation will be:  
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VI. CONCLUSION 

 An approach to synthesis of optimal modal controllers for a 
class of DC motor drives is discussed in this paper.   

 The control code which should be supplied as input to the 
power converter is determined by condition (14).  In accor-
dance with it the current limitation model is composed (Sub-
system 4). This model is represented in Fig. 4. 

 The synthesis implements a combination between both - 
poles setting of the closed-loop system (modal control) and 
quadratic quality criterion minimization (optimal control). 
 Research carried out through computer simulation shows, 
that such type of control can provide good performance. 

 

 The results obtained can be used in optimization and tuning 
of such types of electric drive systems. 
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