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Application of Neural Networks for Analysis in Bolted 
Busbar Connections of New Design 

Snejana T. Yordanova1 and Raina T. Tzeneva2  

Abstract -The work reported describes how introducing slots 
(design S), slots, ending with small holes (design SH) and 
perforation groups of small holes (design G) in a proper way 
around the bolt holes in high power bolted busbar connections 
increases significantly the true contact area and therefore 
reduces contact resistance. Neural network analysis is applied for 
every of the three designs in order to find possible better 
solutions in the design.  
 

Keywords –Bolted busbar high power connections, Bolt holes, 
Neural network analysis, New design shape. 

I. INTRODUCTION 

Steadily increasing energy consumption in densely 
populated regions imposes severe operation conditions on 
transmission and distribution systems, which have to carry 
greater loads than in the past and operate at higher 
temperatures. 

Power connections are generally the weak links in electrical 
transmission and distribution systems – both overhead and 
underground systems.  

Mainly, there are two factors that affect the reliability of a 
power connection. The first is the design of the connection 
and the material from which it is fabricated. The second is the 
environment to which the connection is exposed. 

The fundamental requirements for the design of reliable 
high-power connections used in bare overhead lines are given 
in [1]. The basic design criteria for power connectors are: 
maximization of electric contact true area, optimization of 
frictional forces with conductors (buses), minimization of 
creep and stress relaxation, minimization of fretting and 
galvanic corrosion, minimization of differential thermal 
expansion along and normal to interfaces. Summarizing the 
major connection design criteria, mentioned above it is 
worthwhile noting that all the criteria can be met 
simultaneously by working out an outline that achieves a 
sufficiently large contact load, a large area of metal-to-metal 
contact and sufficient elastic energy storage in the connection 
to maintain an acceptable connector’s contact load throughout 
the service life of the connection. 

The aim of the present investigation is to apply neural 
network analysis in bolted busbar connections of new design 
in order to find possible better solutions in the design. 

II. THEORETICAL BACKGROUND 

The new slotted hole shape arises from [2, 3]. Boychenko 
and Dzektser have shown that changing the connection design 
can equally be effective in increasing the contact area. In other 
words, cutting longitudinal slots in the busbar, the actual 
surface area of a joint can be increased by 1.5 to 1.7 times of 
that without slots. The contact resistance of joint configuration 
with slots is 30-40% lower than that of the classical case and 
is mechanically and electrically more stable when subjected to 
current cycling test [4], [5]. The beneficial effect of sectioning 
the busbar is attributed to a uniform contact pressure 
distribution under the bolt, which in turn, creates a larger 
contact area. This case is investigated in [6]. 

This idea is developed in [7], [8] and a new slotted hole 
shape for bolted high power connections – design S is 
proposed. Fig. 1 shows the hole shape of the 11 investigated 
cases. A significant rise in contact pressure and contact 
penetration is obtained. 

         
Fig. 1. Hole shape of design S with 2, 4 or 8 slots 

The cases are as follows: 
case1– classical case – copper busbars with 2 bolt holes; 
case2– the slots are parallel to the busbar axis; 
case3– the slots are perpendicular to the busbar axis; 
case4– mixed case – one of the busbars belongs to case 2 

and the other one to case 3; 
For cases 2 to 4 all bolt holes have two slots of length 3mm 

and width 1mm. 
In cases 5 to 8 the busbar holes have 4 slots, 3mm long with 

variable width, arranged in such a way that the pairs of slots 
are on mutually perpendicular axes, rotated at 45 degrees 
about the busbar axes. Widths are: 

case 5 – 0.3mm; case 6 – 0.5mm;   
case 7 – 0.7mm;  case 8 – 1mm; 
case 9 – the 4 slots are not rotated; 
case 10 – mixed – the first busbar corresponds to case 8 and 

the second one to case 9; 
case 11 – a busbar hole with 8 slots of length 3mm and 

width 1mm; 
Considered next is design SH, investigated in details in [9] 

and illustrated in Fig. 2. The new shape is that of bolt hole 
slots ending with small circular gaps. There is ample of 
contact pressure and contact penetration data gathered. 
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Fig. 2. Bolt hole slots, ending with small circular gaps 

Table I describes the 11 investigated cases of different slot 
width and radius of the small circular holes. 

TABLE I 
Case No 1 2 3 4 5 6 7 8 9 10 11

Slot width,  
mm 

0 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.7 0.7 1.0

Small hole 
radius, mm 

0 0.3 0.5 0.7 1.0 0..5 0.7 1.0 0.7 1.0 1.0

Cutting thin slots in copper or aluminum poses certain 
difficulties that could be overcome effectively by changing 
the slots with groups of two or four small holes - design G. 

There have been studied 13 different design G cases.  
case 1– classical case – copper busbars with 2 bolt holes; 
case 2– two horizontal groups of two holes of diameter 

Ø1mm and distance of 0.9mm between the holes, parallel to 
the busbar axis; 

case 3– two vertical groups of two holes of diameter Ø1mm 
and distance of 0.9mm between the holes; 

case 4– mixed case – one of the busbars in the connection is 
of case 2 and the other one is of case 3; 

case 5 – eight groups of two holes of diameter Ø1mm and 
distance of 0.9mm between the holes, displaced at angle of 45 
degrees; 

case 6 – two horizontal groups of three holes of diameter 
Ø0.8mm and distance of 0.2mm between the holes, parallel to 
the busbar axis; 

case 7 – two vertical groups of three holes of diameter 
Ø0.8mm and distance of 0.2mm between the holes; 

case 8 –four groups (two horizontal and two vertical) of 
three holes of diameter Ø0.8mm and distance of 0.2mm 
between the holes; 

case 9 – four groups of three holes Ø0.8mm and distance of 
0.2mm between the holes, laying on two mutually 
perpendicular axes, rotated at an angle of 45 degrees in 
relation to the busbar axes; 

case 10 – 2 horizontal groups of 3 holes of diameter 
Ø0.9mm and distance of 0.1mm between the holes ; 

case 11 – two vertical groups of three holes of diameter 
Ø0.9mm and distance of 0.1mm between the holes; 

case 12 - four groups (two horizontal and two vertical) of 
three holes of diameter Ø0.9mm and distance of 0.1mm 
between the holes; 

case 13 - four groups of three holes Ø0.9mm and distance 
of 0.1mm between the holes, laying on two mutually 
perpendicular axes, rotated at an angle of 45 degrees in 
relation to the busbar axes; 

Fig. 3 shows the hole shapes of the cases with two, four and 
eight groups of small holes. 

     

Fig. 3. Hole shape for design G with 2, 4 and 8 groups of small holes 

All the cases are supposed to: decrease radial loadings on 
bolts that emerge after the connection is assembled; increase 
the contact penetration in the busbars near the bolts area; 
maximize the true area of metal to metal contact in an 
electrical interface. 

Computer models for all the cases are realized, using 
software products ANSYS Workbench and ANSYS and they 
confirm significant rise of contact penetration and contact 
pressure in the interface between the buses [6], [7], [8] and 
[9]. 

III. APPLICATION OF NEURON NETWORKS FOR 
ANALYSIS 

Artificial neural networks (ANN) have gained recently 
popularity in many engineering applications for their 
capability to model non-logical data, classify, store and 
present numerous sensors readings and experimental 
knowledge in terms of logical symbolic structures. ANNs 
perform function approximation/mapping as well, being 
tolerant of data imprecision and noise, which can be 
successfully applied for interpolation and prediction [10-12].  

A two-layer neural network with non-linear differentiable 
and monotonic increasing activation functions in the hidden 
layer can be off-line trained to reproduce any deterministic 
non-linear input-output relationship using a vectors of 
representative input-target training couples and applying the 
backpropagation rule. The matrix block diagram of a network 
with Q batching input vectors p and with logistic sigmoid 
activation functions in both layers F1 and F2 is shown in 
Fig.4. The output Ai (i=1, 2) of each l log-sigmoid function Fi 
in the i-th layer is given by: 

 l
k

кkl
1Ni bi.pWiNi   ,)e1(Ai +=+= ∑−− ,   (1) 

where Ni is the function input and the weight Wikl and the 
bias bi are the adjustable ANN parameters. The log-sigmoid 
function allows to map the input from the interval (-∞, +∞) 
into the interval (0.1). The number of the inputs R 
corresponds to the number of the geometrical parameters of 
the design problem (slots and holes), Q is the number of 
measurements available.  
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Fig.5. Backpropagation ANN model of design SH 

 
While the number of the output layer neurons S2 depends 

on the number of problem outputs (here S2=2 - the maximal 
contact penetration M and the contact area CA), the number of 
the neurons in the hidden layer S1 can be freely selected in 
order the optimization problem to have a satisfactory with 
respect to time and accuracy solution. 

The weight matrices W1 and W2 and the bias vectors b1 
and b2 are being continually adjusted in the direction of the 
steepest descent with respect to minimization of the mean 
squared error (MSE) of the network. Derivatives of error 
called delta vectors δ are calculated for the network’s output 
layer and then backpropagated through the network until delta 
vectors are available for each hidden layer. 

The error E is the difference between the target T vector of 
measured/desired values and the ANN output A vectors (E=T-
A) that corresponds to a given input vector from the batch of 
input vectors. The steepest descent method is used with 
adaptive learning rate in order to increase convergence of the 
gradient procedure in the surroundings of the minimum, to 
decrease the number of iterations, and to avoid local minima 
and instability at large rates. Initialization of the network is 
provided by a random number generator that produces values 
within the range (-1, 1). The new weights Wi,j connecting 
neurons from layer i to layer j and the biases bi at the k+1 
iteration are calculated according to the backpropagation rule: 

jiijijijij p.)(W)(W)(W)1(W δα+=Δ+=+ kkkk (2) 

    iiiii .)(b)(b)(b)1(b δα+=Δ+=+ kkkk ,   (3) 
where δi is the delta vector for the current i layer, pi is the 

corresponding input vector, α is the learning rate.  
The calculations move from the output to the input layer of 

the network. When a desired accuracy is reached in the target 
points, the network is tested with more input vectors than the 
ones used in training to see if it has learned to generalize the 
function it is learning. If the approximated function is smooth 
and monotonic in-between the target points, the training is 
considered to have ended successfully. Else, it should be 
started from different initial conditions, or else the number of 
the neurons in the hidden layer or the number of hidden layers 
should be increased. Often more inputs and corresponding 

targets are added to the training vectors. Specialized software 
assists the design and training of the ANN. 

The ANN used for modelling in the different design tasks 
is a two-layer log-sigmoid backpropagation ANN with five 
hidden neurons (S1=5) and two output neurons (S2=2).The 
required accuracy in training is 1-10 and the training algorithm 
with adaptive learning rate is the Levenberg-Marquardt 
optimisation (a modification for speeding up the steepest 
descent method); default criterion (stop condition) is MSE. 

The ANN model of design SH is depicted in Fig.5. Here 
R=2 (radius r and slot’s width w), Q=11. The final results 
after training are shown in Fig.6 for M and for CA 
correspondingly. 
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The maximum of both M and CA with respect to S as 
function of r is depicted in Fig.7. 
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Fig.7. Influence of r on maximum of M and CA with respect to S 

 

The ANN model of the design S is obtained for R=3 
(number of slots N, angle of rotation α and slot’s width w), 
Q=8. It allows studying the relationship of maximal M and 
maximal CA with respect to N as functions of w and α– Fig.8. 
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The ANN model of the design G is obtained for R=5 
(number of hole groups n=0÷8, number of holes in a group 
N=0÷3, diameter of holes d=0.1÷1mm, distance between 
holes a=0.1÷1mm and angle of rotation α=0÷900), Q=13. The 
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relationship of M and CA as function of the combination 
number, that determines a specific set of parameters [n, N, d, 
a, α], is shown in Fig.9, from which the maximal values for M 
and CA are determined respectively - Mmax=0.9469 for n=3, 
N= 2, d= 0.8mm, a= 0.9mm, α=900 and CAmax= 0.9931 for 
n=3, N= 3, d= 0.4mm, a= 0.9mm, α=750.  
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Fig.9. Relationship between M and CA and combination number 

(determined set of input parameters) 

The parameters of the three ANN models for the three 
different design tasks - weight matrices W1 and W2 and 
biases b1 and b2 for each of the two neuron layers are given in 
Table II. 

IV. DISCUSSION AND CONCLUSIONS 

1. Based on the results from the application of neuron 
network analysis in bolted busbar connections of new design 
for design SH (slots, ending with small holes) the case with 
radius of ending holes r=0.4 mm have to be modelled. 

2. The recommended cases for design S (sloted bolt 
holes) are already investigated. 

3. The ANN model for design G (groups of small holes) 
establishes 2 cases for max. values of M and CA – (n=3, N=2, 
d=0.8mm, a=0.9mm, α=90 degrees) and (n=3, N=3, 
d=0.4mm, a=0.9mm, α=75degrees) for additional 
investigation. 

 
 
TABLE II 

Type of design model W1 b1 W2 b2 
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⎥
⎥
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⎢
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⎢
⎢
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⎥
⎥
⎥
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⎥⎦
⎤

⎢⎣
⎡

0.04   
0.86- 

S 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0.44    47.80-   2.54  
0.38-  6.18-     0.94-
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0.002    0.45-  2.11    0.47    0.40-
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