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Abstract - In this article a new window function, obtained from 
algebraic polynomial, approximating delta function in Hausdorff 
metric is presented. Equations defining the polynomial 
parameters are derived. A domain of definition and analytical 
equations for Hausdorff’s window are defined. The change of 
Hausdorff’s window due to the Hausdorff’s distance and the 
order of the polynomial are graphically presented. Based on the 
obtained relations, a method for digital FIR filter synthesis is 
proposed. Equations for impulse and frequencies responses are 
defined. Mathematical relations for filter order and Hausdorff’s 
distance, due to the attenuation in stop band and the value of 
transition length, are presented. An example for filter synthesis is 
shown. A comparative analysis of the magnitude responses of 
Hausdorff’s and Kaiser FIR filters is conducted. 
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I. INTRODUCTION 

The window method is one of the ways for FIR filters 
synthesis. The method’s concept is approximation of 
frequency characteristic of ideal low pass filter. 
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where cω  is the cut off frequency of the filter. The impulse 
response of an ideal filter can be obtained from the equation 
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The ideal impulse response must be limited as to obtain a 
concrete filter, because the real impulse response must be zero 
for negative values of its argument n  and defined in the 
interval , where  is the real filter length. 0 k N≤ ≤ N
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The limitation of ideal impulse response could be obtained 
with multiplying of window function  ( )w n
 . (4) ( ) ( ) ( )dh n h n w n=
In frequency domain, this is equivalent to convolution of ideal 
filter transfer function with frequency response of window 
function. This convolution provokes decreasing of steepness 
between band pass and band stop area and oscillations in the 
two bands in the proximity of the cut off frequency, due to the 
spectral deposition effect. Window functions are constant: 
Bartlett, von Hann, Hamming, Blackman, etc. and variable 
with parameter: Gauss, Tukey, Chebyshev, Kaiser and so on 

[1]. From above mentioned windows the best ratio between 
steepness of magnitude response and attenuation in the stop 
band gives the Kaiser’s window. 

In this article a new window function basing on Hausdorff’s 
distance and its application in FIR filers’ synthesis is offered. 

II. WINDOW FUNCTION IN HAUSDORFF’S METRIC 

Window function is obtained by delta function 
approximation like this 
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with an algebraic polynomial, accomplishing the best 
approximation of delta function in Hausdorff’s metric in 
interval [-1, 1] [2]. On Fig.1 the proximity concerning 
Hausdorff’s distance of the function ( )M xδ  by 1M =  is 
shown. 
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Fig.1. Approximation of delta function with Hausdorff’s 

polynomial 
 

It is proved [2], that the polynomial 
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is the unique and the best approximation of delta function in 
Hausdorff’s metric.  is Chebyshev’s polynomial of first 
kind and degree m; 

mT
α  is parameter, and the factor (product) 

αε  determines the function’s bandwidth  in the area of the ε  
level main lobe. The relations between the polynomial’s 
parameters can be defined from the equation 
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The window function is obtained with the translating of 
Hausdorff’s polynomial in positive direction with value 1, the 
definition domain is reduced only to the main lobe interval 
[ ]1 ,1αε αε− +  and raised to the power of 1.27  
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Fig.2. Hausdorff’s window functions depending on the power 

of polynomial m  

 
Fig.3. Hausdorff’s window functions depending on the 

Hausdorff’s distance ε  
On Fig.2 and Fig.3 Hausdorff’s window functions are 

shown, depending on the power of polynomial m  values and 
Hausdorff’s distance ε . From the figures a conclusion can be 
made, that m  and ε  change the width of the function main 
lobe and they can be used as parameters in the FIR filter 
synthesis. 

III. FIR FILTER SYNTHESIS WITH HAUSDORFF’S 
WINDOW FUNCTION 

As it was mentioned in the beginning, the synthesis means 
an approximation of ideal low pass filter. If the Discrete 
Fourier Transformation is applied to the ideal magnitude 
response, an ideal impulse response is obtained in the form of 

( )sin x x . To be causal, the function is multiplied by 
appropriate window function (4) and translated in positive 
direction with the half of the interval of the window definition 
domain. The obtained result is the real impulse filter response.  

If a sequence of impulses is applied to the digital filter 
input, then the output response is the sum 
 ( ) ( ) ( ) ( ) ( )1 2y n h x n h x n 1= + − +  

 ( ) ( ) ( ) (3 2 1h x n h N x n N+ − + + + −L ) , (9) 

where [ ]0,n N= . 
The equation (9), expressed by the complex variable , is 

the real filter transfer function and obtains the form 
z

 ( ) ( ) ( ) 11 2N NH z h z h z− − −= + +  

 ( ) (23 Nh z h N z− −+ + + +L ) 01 . (10) 

The complex variable jz re ω=  is shown by its module r  and 
angle ω . If we admit 1r = , then the function ( )H z  will 
circumscribe round a single circle the frequency characteristic 

( )H jω . Considering this, the transfer function of the real 

filter is obtained after substitution jz e ω=  in equation (10) 
 ( ) ( ) ( )0 11 2j jH j h e h eω ωω − −= + +  

 ( ) ( )23 1j jNh e h N eω ω−+ + + +L − , (11) 
where (1), (2), , ( 1)h h h N +K  are the filter coefficients. 

To obtain the relations between the filters’ parameters is 
appropriate to use the relation by the Kaiser’s 
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is the difference between the normalized toward sampling 
frequency sf  stop band frequency af  and cut off frequency 

cf . The attenuation in the stop band in dB is marked by a . 
The Hausdorff’s distance could be obtained from the 
relations: 
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At 50dB< 130dBa ≤  
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It is appropriate the power of Hausdorff’s polynomial  to 
be equal to 

m
N , then from the equation (7) can be defined the 

factor αε . 
The described method will be shown with the following 

example: 
Let us calculate digital FIR filter coefficients with cut-off 

frequency , stop band frequency , stop 
band attenuation , at sampling frequency 

. 

1Hzcf = 2Hzaf =
25dBa =

10Hzsf =
From (13)  is defined and from (12) 0.1fΔ =

 25 7.95int 1 13
14.36 0.1

N m−⎛ ⎞= + = =⎜ ⎟×⎝ ⎠
. (18) 

Hausdorff’s distance can be obtained from (15) 
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then from (7) the factor αε  is defined 
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The filter’s impulse response is obtained from multiplying  
( )sin x x  function by Hausdorff’s window function (8) 
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with argument’s value . The obtained values 

are filter’s coefficients by the power of  

0,1, 2, ,n = K
nz−

 ( ) 13 12 11-0.0234 0.0124 0.0173h z z z z− −= − + − +

z− +
3z− +

+
4j ω +

13je

 

  10 9 8 70.064 0.1187 0.1675 0.1962z z z− − −+ + + +
  6 5 40.1962 0.1675 0.1187 0.064z z z− − −+ + + +
 . (22) 2 10.0173 0.0124 - 0.0234z z− −+ −
The filter’s transfer function is obtained in accordance with 
(11) 
  ( ) 0 1-0.0234 0.0124j jH j e eω ωω − −= −

  2 30.0173 0.064 0.1187j je e eω ω− − −+ + +
 5 120.1675 0.0124 - 0.0234j je eω ω− −+ + −L

where 2 sf fω π= ; ( )0 2sf f= ÷ . 
The transfer function module is the filter magnitude response, 
and its argument – phase response. In some cases it is 
necessary the module to be normalised toward 0dB, as 
dividing by the sum of coefficients . ( )1h n +
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On Fig.4 and Fig.5 the filter’s frequency responses are 
shown.  

 

 
Fig.4. Normalised filter’s magnitude response 

 

 
Fig.5. Filter’s phase response 

 
From Fig.5 is seen, that the filter has linear phase response. 

It is because of impulse response symmetry, what comes from 
the equation (23) coefficients. 

The filter’s group time delay (GDT) is the phase response 
derivative. As it is linear, GDT will be constant. Its value is 
defined from the equation 
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ω− , (23) 

On Fig. 7 magnitude responses of filters with Hausdorff’s 
window and Kaiser’s window with equal input data are 
compared: cut off frequency 1Hz, stop band frequency 2Hz; 
sampling frequency 10Hz; filter’s length 37N =  and stop 
band attenuation 60dB. 
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Fig.6. Group Delay Time 
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Fig.7. Magnitude responses comparison 

 
The comparison shows that filters are obtained with 
Hausdorff’s window function, where attenuation in stop band 
increase quicker than in the Kaiser’s filters. In this case for the 
frequency band 4-4.5Hz, it is about 18-25dB. This advantage 
is due to smaller magnitude response steepness in the area 
between cut off frequency and stop band frequency. In our 
case for frequency 1.4Hz the difference is about 3.5dB, which 
is illustrated on Fig.8.  
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Fig.8. Magnitude responses comparison - fragment 

IV. CONCLUSIONS 

In this article a new window function in Hausdorff’s metric 
is offered. It is applied for the first time in FIR filter synthesis. 
The obtained characteristics are similar to Kaiser’s filters. The 
magnitude response has smaller steepness in the area between 
cut off frequency and stop band frequency. This circumstance 
defines the bigger attenuation in stop band area. Hausdorff’s 
FIR filters possess all advantages and disadvantages of this 
kind of filters. They are calculated easier than digital IIR 
filters; always are causal; possess linear phase response. 

 

 
Fig.9. Magnitude responses comparison 

 
The main disadvantages are the smaller selectivity and the 

impossibility to obtain accurate magnitude response. 
The digital FIR filters obtained by Hausdorff’s window 

function are better than the most FIR filters, as it is illustrated 
on Fig.9. They expand the variety of filters of this type and 
may be applied in practice.  
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