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Abstract – A new method of design and implementation of 
variable fractional delay digital filters based on Thiran allpass 
phase delay approximation and using truncated Taylor series 
expansion of the filter coefficients is proposed in this paper. This 
method is simple for realization and is providing better tuning 
capabilities compared to other known methods. 
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I. INTRODUCTION 

Fractional delay (FD) filters are very useful in digital signal 
processing and in telecommunications for time delay 
estimation, timing adjustment in digital modems, precise jitter 
elimination, frequency synchronization in wireless 
telecommunications and speech processing [1]. Recently, the 
variable FD digital filters are subjects of an ever growing 
interest [2]-[7]. 

The most popular variable FD filter with finite impulse 
response (FIR) is the Farrow structure which allows control of 
the modelled fractional delay with a single parameter [2]. The 
main disadvantage of the FIR FD filters is that both the 
magnitude and the phase responses are varying from the 
desired response when tuning the fractional delay. 

The design of variable FD filters with infinite impulse 
response (IIR) is very complicated and is based usually on 
allpass structures, because of their best magnitude properties. 
The overall delay of an IIR structure satisfying the same phase 
delay requirements is considerably lower than that of the 
corresponding FIR filter. Disadvantages of the IIR FD filters 
are higher round-off noise, possible instability and worst 
behaviour in a limited wordlength environment. 

The most popular design method for allpass based FD 
digital filter with a maximally flat group delay response is 
based on Thiran approximation procedure [7], giving a closed-
form solution for the transfer function (TF) coefficients. Two 
methods for designing variable allpass FD filters based on 
Thiran approximation are known for now. In [3][4] a closed-
form method designing and implementing maximally flat 
allpass variable FD filters has been proposed. It is based on so 
called gathering structure (derived from the direct form 
structure) where the filter coefficients are represented as 
polynomials of the fractional delay parameter. The drawbacks 
of this method are the complicated structure (with too many 
multipliers) and the higher sensitivity (as of any direct-form 

structure). The second method which utilizes the poles of two 
Thiran FD filters is proposed in [5][6] and is called “root 
displacement interpolation method”. It uses two Nth order 
allpass Thiran FD filters modelling two different fractional 
delays D1 and D2 to obtain a new Nth order allpass FD filter 
with the delay between D1 and D2  The interpolated filters so 
obtained have a narrower bandwidth with flat phase delay. 
The method does not allow interpolation when the fractional 
parts of the delays D1 and D2 have different sign. The 
implementation of this method is also quite complicated and 
the range of tuning of the phase delay is quite narrow (the 
authors are talking more often about adjustment than about 
tuning). 

In this paper we propose and investigate a simple tuning 
procedure of Thiran based FD variable filters utilizing 
representation of the multiplier coefficients as truncated 
Taylor series. All theoretical results obtained in this work are 
verified experimentally. 

II. DESIGN PROCEDURE 

Let an N-th order allpass IIR filter has the following 
transfer function: 
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The Thiran approximation method gives a closed-form 
solution for TF coefficients as a function of the desired 
fractional delay parameter D (D is a positive real number that 
can be split into an integer part - corresponding to the TF 
order N - and a fractional part d as D = N + d):  
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The most straightforward approach to make d variable is to 
recalculate ak (2) for every given d and to reprogram the 
coefficients in (1) while using a direct form realization. Such 
an approach is not practical and is difficult to implement in 
real time because of too many multiplication and division 
operations. One possible way to eliminate the division 
operation and generally to simplify the calculation of ak (2) is 
to introduce a Taylor series expansion of the coefficients ak 
with respect to d and to truncate these expansions after the 
linear term assuming d<<1. Such an approach will limit the 
range of values of d over which the tuning will be effective 
but it will make it possible in real time. To achieve such 
tuning we propose the following design procedure: 

1. Selection of the allpass TF order corresponding to a given 
requirements (desired fractional delay value D and/or the 
bandwidth with maximally flat phase delay response). 
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2. Design of an allpass FD filter using Thiran approxi-
mation. 

3. Taylor series expansion of each TF coefficient and 
truncation after the linear term. 

4. Composite multiplier realisation. 

When the selected allpass TF order is lower (first or 
second) there is a simple relation between the transfer 
function poles positions (coefficients) and the desired phase 
delay. In these cases, it is more appropriate to use (or to 
select) an allpass section whose structure is different from the 
direct from. As it is known the direct form structure has 
higher sensitivity to the coefficients values changes. The 
proper selection of the allpass section used may reduce the 
sensitivity. For higher order applications the relation between 
the poles positions (the coefficients of the first- and second-
order sections in a cascade realization) and the desired phase 
delay is very complicated and can not be obtained in closed-
form and thus the Taylor approximation can not be applied. 
Because of that, the cascaded realizations with minimized 
sensitivity of the individual first and second order allpass 
sections can not be used. As a result for higher order allpass 
transfer functions the proposed design procedure can be 
applied only with direct form structure realizations. 

The most common requirement for real applications is for 
phase delay with small fractional delay parameter values 
( ) which means that the fractional part 
d will change with in the range [-0.5, 0.5]. It is equivalent to 
TF poles situated in the area around z = 0. In order to obtain a 
higher fractional delay time accuracy, we have proposed in [8] 
a new second order allpass section (called IS and shown in 
Fig. 1a) which has lower sensitivity for poles in that area than 
other well known second order allpass sections. Its transfer 
function is [8] 
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There is a great number of first and second order allpass 
sections in the literature [9][10] and we shall mention in this 
study only the most popular, those of Mitra and Hirano: MH1 
first order allpass section, shown in Fig. 1b, and MH2B 
second order allpass section, shown in Fig. 1c.  

 
 a) IS 

 
 b) MH1 c) MH2B 

Fig. 1. First- and second-order allpass sections. 

Their transfer functions are as follows: 
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After using the Thiran approximation, the transfer function 
coefficients of the allpass sections from Fig. 1 can be 
expressed as a function of the fractional part d of the delay 
parameter value D as shown in Table I. 

TABLE I 
MH1, IS AND MH2B FRACTIONAL DELAY FILTER COEFFICIENTS 

MH1 IS MH2B 
a1 a b b1 b2
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It is seen from Table I that all these coefficients are 
depending on d in quite a complicated way not permitting real 
time recalculation and tuning. It appears thus that the 
truncated Taylor series expansions have to be used. The 
corresponding representations of the coefficients (after first 
order approximation) are given in Table II. 

TABLE II 
MH1, IS AND MH2B VARIABLE FRACTIONAL DELAY  

FILTER COEFFICIENTS 

MH1 IS MH2B 
a1 a b b1 b2

d
2
1  d

2
1 d

12
1  d

3
2  d

12
1

All the coefficients in Table II are surprisingly simple and 
they can easily be realized as composite multiplier 
coefficients containing one fixed and one variable part as 
illustrated in Fig. 2 for a1 and a (Table II). 

 
Fig. 2. Composite variable multiplier realization of a and a1 after a 

first-order approximation (Table II). 
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The similar results for the transfer function coefficients can 
be obtained in the case of higher allpass transfer function 
order. For example, the transfer function coefficients (1) of 
fifth order allpass FD filter obtained after the proposed 
method are given in Table III. 

TABLE III 
FIFTH ORDER VARIABLE FRACTIONAL DELAY  

FILTER COEFFICIENTS 

a1 a2 a3 a4 a5

d
6
5

−  d
21
5  d

84
5

−  d
504

5  d
1260

1
−

III. VERIFICATION OF THE DESIGN PROCEDURE 

To verify the proposed method we have designed one first-
order (MH1-based) and two second-order (IS-based and 
MH2B-based) allpass FD filters. Their transfer functions 
coefficients are given in Table II. The results for the tuned 
phase delay responses obtained after a first-order Taylor 
approximation are shown in Figs. 4a, 5a and 6a with dashed 
lines. The solid lines present the above mentioned FD filters 
designed for D = N + d. As it can be seen the proposed 
method works properly if the tuning parameter d is very small, 
approximately in the range [-0.05, 0.05]. Larger values of d 
are causing considerable deviation of the phase delay curve 
and are narrowing its maximally flat part. It means that the 
proposed method can be used only to adjust the phase delay 
within a small range of values of d. But, when there is a need 
to tune the phase delay in a wider range, the first-order 
approximation will be not enough. To solve this problem, we 
propose to use a second-order Taylor approximation for 
transfer function coefficients representation. The new transfer 
functions coefficients are given in Table IV. All these new 
coefficients still could be calculated and tuned in real-time, 
they have a homogeneous structure and can be realized as 
composite multipliers containing two fixed and two variable 
multipliers as illustrated in Fig. 3 for coefficients a and a1 
(Table IV). 

TABLE IV 
MH1, IS AND MH2B VARIABLE FRACTIONAL DELAY FILTER 

COEFFICIENTS AFTER SECOND-ORDER APPROXIMATION 

MH1 IS MH2B 
a1 a b b1 b2
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Fig. 3. Composite variable multiplier realization of a and a1  

(Table IV) after a second-order approximation. 

 
 a) 1st-order approximation b) 2nd-order approximation 

Fig. 4. Tuning of first-order MH1 allpass FD section 

The results for the tuned phase delay responses of the above 
mentioned FD allpass filters obtained after a second-order 
Taylor approximation are given in Figs. 4b, 5b and 6b with 
dashed lines. There is a considerable improvement in both, the 
range of values of d over which the tuning is possible and 
accurate, and in retaining the range of frequencies with flat 
phase-delay response. The price of such improvement (one 
fixed and one variable additional multipliers per TF 
coefficient) is readily acceptable in many practical cases. 

 
 a) 1st-order approximation b) 2nd-order approximation 

Fig. 5. Tuning of second-order IS allpass FD section 

 
 a) 1st-order approximation b) 2nd-order approximation 

Fig. 6. Tuning of second-order MH2B allpass FD section 
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IV. EXPERIMENTS 

In order to investigate the applicability of the proposed 
method in higher order variable allpass FD filter realizations 
we have designed one 3th and one 10th order allpass FD filters. 
The third order allpass FD filter is designed first for FD 
parameter values D in the range [2.6, 3.4] using Thiran 
approximation (the solid lines in Fig. 7a and b) and then the 
filter is turned to variable by using the method here proposed 
with first- and second-order Taylor approximation of the 
multiplier coefficients. The results for the phase delay 
responses are given in Fig. 7. The same procedure is applied 
for tenth order allpass FD filter which is designed for D in the 
range [9.6, 10.4] and the results for the phase delay responses 
are given in Fig. 8. As it can be seen, the range of the values 
of the tuning parameter d guaranteeing the maximally flat 
behavior of the phase delay with first-order Taylor 
approximations is approximately [-0.05, 0.05] and with 
second-order approximation is approximately [-0.3, 0.3]. The 
same results for the tuning parameter d are obtained for any 
other allpass FD transfer function order. The multipliers 
realizations for first-order and second-order Taylor approxi-
mation are similar to those given in Figs. 2 and 3, but with 
different values of the fixed multipliers.  

 
 a) 1st-order approximation b) 2nd-order approximation 

Fig. 7. Tuning of third-order allpass FD filter 

 
 a) 1st-order approximation b) 2nd-order approximation 

Fig. 8. Tuning of tenth-order allpass FD filter 

The results from Fig 8b are comparing very favorably with 
similar results (10th order transfer function) given in [6] where 
the range of values of d is only [0.1, 0.3] and the maximally 

flat part of the phase delay response is narrower. 

V. CONCLUSION 

A new method of design and implementation of variable 
FD allpass digital filters was proposed in this paper. It is 
based on Thiran maximally flat approximation of given phase 
delay response and makes use of truncated Taylor series 
expansion of the filter coefficients. It was found that 
truncation of the series after the linear term is applicable only 
for phase delay adjustments in a quite limited range of values. 
The second-order Taylor approximation of the coefficients is 
providing possibilities of tuning in much wider range of 
values of d exceeding the one achieved in other known public-
cations. The implementation of the method is simple and 
permits real time tuning of the phase delay time. The circuitry 
is less complicated compared to the other known methods. 
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