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 Abstract — Identifying and classifying audio content is of 

great importance nowadays. There exists very large pool of 
audio signals, which need to be automatically classified. In this 
paper, we used wavelet descriptors for characterizing short 
music sequences, and performed classification based on linear 
support vector machines (SVM). Performed experiments 
provided good results with classification accuracy of more than 
76%. 
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I. INTRODUCTION 

The quantity of multimedia information (audio, video, 
pictures,…) stored in digital form increases on daily basis. 
Faced with such large pool of information, a human user 
encounters several challenges: how to find specific 
multimedia information based on content description; how to 
recognize and retrieve desired information fast; how to 
determine category to which novel content belongs; to which 
data it is similar? Indeed, fast recognition, retrieval and 
classification of multimedia content are current research 
topics [1-9]. Among all different types of multimedia 
information, in this paper we concentrate on audio signals and 
their classification.  

To perform efficient classification, it is important to 
identify relevant features that describe audio signals and help 
distinguish signals belonging to different categories of 
interest. Ideally, we are interested in detecting a small number 
of features bearing a bulk of information necessary for 
classification. The features of interest should have similar 
values for objects in the same category, and significantly 
different values for objects in distinct classes.  

Humans perform classification of sounds based on 
subjective criteria such as whether melodies sound alike, and 
use similarity in music categories such as rhythm, tonality, 
etc. In general, every musical sound has a specific timbre that 
results in highly complex signals [2]. Signal analysis and 
processing apparatus is necessary to extract descriptors 
suitable for automatic characterization of music sounds. 
Fourier analysis is widely used technique for describing 
similarities between long sequences of stationary signals 
composed of sine waves. Although it is used as a description 

tool in MPEG-7 compression standard [2], this method is not 
well suited to describe very specific features like those in 
mainly non-stationary polyphone musical fragments. For 
instance, when analyzing a signal by using a large window, 
the frequencies cannot be sufficiently resolved in time. In 
contrast, when using a small window, a fine time resolution is 
possible, but, low frequency components can no longer be 
identified. This means that for retrieving audio signals, which 
are time-varying, highly irregular and non-stationary, Fourier 
analysis is not capable of providing information about all 
frequencies contained in some sequence. In addition, this 
analysis does not provide any temporal information 
whatsoever. Furthermore, practical reasons dictate the use of 
short subsequences for retrieving audio material. When 
applying the Fourier analysis on these sequences, high 
resolution is not possible. For all these reasons, the use of 
wavelet transform (WT) is proposed [10]. WT provides multi-
resolution analysis in both time and frequency domains. This 
way, details or global trends that cannot be identified in one 
resolution, could be detected in another. Wavelet transform is 
capable of distinguishing very small and delicate differences 
between signals, even from short fragments. Consequently, 
the wavelet transform is recognized as a powerful tool for 
identifying and describing audio content [2]. In our related 
research, we determined that four parameters from nine WT 
decomposition levels— maximum, minimum and their 
positions with respect to the beginning of the piece (a total of 
36 features) — are sufficient for describing audio sequence 
[9]. In this paper, we use the same WT parameters to form 
feature vectors, which are associated to each music piece from 
the database. Each piece is assigned to one of the two classes 
according to the title of the song. After the dataset is formed, 
we train the classification model – a linear support vector 
machine. To evaluate the accuracy of the proposed classifier, 
we perform K-fold cross validation and use confusion matrix 
as a measure of classification performance [11-12].  
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The paper is organized as follows. Section II describes 
feature extraction using wavelets. In Section III we present 
classification methodology in more details, followed by 
experimental results in Section IV. 

II. FEATURE EXTRACTION USING WAVELETS 

In this section we describe extraction of relevant features 
for classifying musical sequences by means of wavelet 
coefficients. Wavelets are mathematical functions that split 
data into different time-frequency components, and then 
analyze each component based on a resolution matched to it 
[10]. Moreover, individual wavelet functions are localized in 



 

time, which is quite different from Fourier transform. Such a 
property of wavelets makes time-frequency analysis possible.  

The continuous wavelet transform (CWT) transforms a 
continuous, square-integrable function f(t), into a function 

),( τψ sW  of two continuous real variables: translation, τ, and 

positive scale s, defined as: 
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As we can see, a basis wavelet is translated and scaled 
wavelet function )(tψ . A wavelet function )(tψ  is a zero-
mean waveform confined in time (i.e., with limited duration). 
Scale s allows the compression or expansion of function: the 
larger scale factor the more substantial expansion in time. 
This way, analysis of observed signal on different frequency 
scales may be performed. By changing the translation 
coefficient, τ, wavelet moves along the temporal axis, 
permitting the analysis of entire signal f(t) in time domain.  

In practical applications, scale and translation changes are 
discrete. Typically, a binary (or dyadic) scaling system is 
used, where scale and translation are related through an 
integer k: , and . Hence, the wavelet function 
can be expressed as: 
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Discrete wavelet transform (DWT) is obtained by 
discretization of time such that ,, Zmtmt ∈Δ⋅=  and by 
replacing integral in Eq. (1) with infinite sum:  
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where discretized wavelet functions are defined by Eq. (3). 
When performing a wavelet decomposition, the mother 

wavelet and its s-scaled replicas are shifted along the entire 
signal f(t). For each scale, a wavelet transform is calculated 
along the whole shift τ. For one-dimensional signals, e.g., 
audio sequences, the wavelet decomposition results in 
approximation and details components. Signal f(t) is 
convolved with low-pass filter followed by downsampling for 
obtaining approximation, and with the high-pass filter 
followed by downsampling for detail component. In the next 
step, approximation component splits into new approximation 
and detail components by using the same procedure, and so 
on. Coefficient k determines number of details: for example, 
k=2 means that in first step approximation (a1) and detail (d1)  
components are obtained; while in the second (last) step, new 
approximation (a2) and new detail (d2) components are 
obtained from approximation component a1.  

To describe music sequences, several different wavelets 
and wavelet families were considered in [2], as well as a 
variety of WT parameters. Here, we use a Daubechies wavelet 
of order 4 (db4) [2], [9]. Note that this wavelet does not have 

an explicit mathematical representation, but can be obtained 
from the roots of corresponding generating polynomial. To 
describe content of a music sequence, feature vectors are 
formed using the following four descriptors per each WT 
detail: maximum and minimum values, and their positions 
with respect to the beginning of the transformed sequence. 
One feature vector corresponds to one five-second 
subsequence of a musical sequence. To select relevant 
decomposition details, the characteristics of human aural 
system and properties of decomposition details are used. By 
listening different audio sequences we determined that a 
particular fragment may be recognized when high frequency 
content (corresponding to the first two details) is filtered out. 
On the other hand, high-order WT details (above the 11-th 
detail) consist of almost constant signals. Therefore, we 
decide to use WT details k=3 to k=11, i.e., total of 9 details 
and 4x9=36 features per example.  

Feature vectors are stored in a feature matrix, 
X={x(i,j)}={xi(j)}, where rows i=1,2,…,N correspond to 
examples—music pieces (subsequences), and columns 
j=1,2,…,d, to features (d=36 in our case). Thus, xi denotes a 
d-element feature vector corresponding to the i-th 
subsequence. 

III. SUPPORT VECTOR MACHINE CLASSIFIER 

Classification is a mapping of feature vectors into a set of 
discrete class labels using a classifier—a suitably chosen 
parametric model [12]. To perform classification, model 
parameters are determined through learning procedure using 
labeled training dataset. Subsequently, a classifier is evaluated 
by performing classification on a test set, consisting of 
examples unseen during the learning procedure. During 
testing, a class label prediction is obtained from the model 
output and classification accuracy is determined by its 
comparison with a known class label. 

Linear support vector machines (SVMs) belong to a group 
of generalized linear classifiers [12]. The main idea of support 
vector machines is to construct a hyperplane (e.g., a line in 2-
dimensional space), which separates points that belong to two 
classes, such that the minimal distance between points and the 
separation hyperplane is maximized. The distance between 
points closest to the separation hyperplane and the hyperplane 
is referred to as margin. Points which are at the minimal 
distance from the separation hyperplane are referred to as 
support vectors. Support vector machines use structural risk 
minimization principle [13] and strive to achieve zero training 
error while minimizing the complexity of the model by 
minimizing its VC dimension (VC dimension is inversely 
proportional to the decision margin which SVMs maximize). 
If the linear separation is not possible, SVMs minimize the 
number of misclassified examples on the training set by 
introduction of slack variables and regularization. 

Formally, SVM learning can be stated as the following 
quadratic programming problem [12]: 
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Here, w is vector orthogonal to the separation plane, d0 is the 
intercept of the separation hyperplane, ci∈{-1,1} is a class 
label of i-th example, iξ are slack variables and C is preset 
regularization constant. 

Using Karush-Kuhn-Tucker (KKT) theorem [12], SVM 
learning can be performed as the optimization in dual space of 
Lagrangian multipliers λi. The learning phase reduces to the 
following optimization problem: 
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Classification of a new example xnew is performed as: 
( )0newc dsign new

T += xw ,       (7) 
which can be expressed using the Lagrangian multipliers as: 
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where Ns denotes number of support vectors (i.e., number of 
non-zero Lagrangian multipliers). 

Classifier performance can be evaluated by performing K-
fold cross-validation [12] and using appropriate performance 
metrics. In K-fold cross-validation, available dataset is 
randomly split into K disjoint subsets, the following 
procedure is repeated K times: different K-1 disjoint subsets 
are used for learning model parameters, and the remaining 
subset is used for model evaluation. This guarantees optimal 
use of available data to train the model and fair assessment of 
its classification performance. 

TABLE  I:  
CONFUSION MATRIX 

 True Class 1   True Class 2 
Detected Class 1 True Negative 

(TN) 
False Positive 

(FP) 
Detected Class 2 False Negative 

(FN) 
True Positive 

(TP) 
 
Performance can be measured using a confusion matrix, 

defined in Table I for a two-class problem. The confusion 
matrix provides summary for assignment of examples from 
each class to the predicted classes, using results from all K 
experiments in the cross-validation process. Based on the 
confusion matrix, the following performance measures are 
derived [11]: 

Precision=TP/(TP+FP)         (9) 
     Recall=TP/(TP+FN)       (10) 

     2 Recall PrecisionF value
Recall Precision
⋅ ⋅

− =
+

.        (11) 

Note that Precision is the fraction of test set examples 

correctly labeled as belonging to the class 2 divided by the 
total number of elements labeled to the same class by a model. 
Recall is the partial accuracy when classifying examples from 
the class 2, and F-value is the harmonic means of these two 
ratios. 

IV. EXPERIMENTS 

We created and used audio database consisting of examples 
from four musical sequences. The sequences correspond to 
two different songs, and each song was performed by two 
different performers. Songs are sampled at 44.1 kHz and 16 
bps. Each song is divided into pieces of 5 seconds, thus 
containing about 220,000 samples. One example in the 
database corresponds to each such music piece. In order to 
extract features, each piece was converted to mono and 
amplitudes are normalized to 1 [3]. 

We used the following songs: Take a Chance on Me, 
performed by ABBA1 and by Erasure2 (total of 49 pieces); 
and Something Stupid, performed by Frank Sinatra3 and by 
Robbie Williams4 (total 59 pieces). As an illustration, Fig. 1 
shows a five-seconds music piece, which corresponds to a 
subsequence from the 10th to the 15th second of the ABBA’s 
Take a Chance on Me, and its first 11 WT details (from top to 
down).  

We assigned examples from Take a Chance on Me a class 
label -1 (referred to as class 1 in Table I), while the other song 
examples are assigned class label +1 (corresponding to the 
class 2). To balance classes, we use technique of under-
sampling [14], where random 10 samples from a majority 
class were discarded. 

For each piece from the dataset, we performed one-
dimensional db4 wavelet transform, used details from 3 to 11 
and selected wavelet descriptors (max, min and their 
positions) as features, thus constructing feature matrix as 
described in Section II.  

We varied regularization parameter C, and for each 
parameter value we trained linear support vector machine. We 
applied K-fold cross-validation with K=10, and used 
precision, recall and F-value metrics as defined in Section III 
to evaluate the classification performance. The summary of 
results is given on Table II. 

Regularization parameter C specifies trade-off between 
minimizing training-errors and model complexity. By 
changing the value of C, we could control to which extent 
misclassified points have influence on training. With C=1e6, 
1e9 we achieved 100% percent classification accuracy on 
class 1 (precision is 1). The higher C initially led to 
improvement of recall (classification accuracy of class 2) 
which reached 76.5% for C=1e9. Subsequent increase of C 
worsened generalization performance, as reflected by 
decrease of all three observed performance measures.  

Obtained classification accuracy compares well with results 

 
1 ABBA, The Album, Sweden, 1977. 
2 Erasure, Erasure Pop!: The First 20 Hits, 1992. 
3 Frank Sinatra, The World we Knew, Warner Music Group, 1967. 
4 Robbie Williams, Swing when you’re Winning, EMI Int’l, 2001. 
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reported in [9]. There, using a different dataset, we 
demonstrated identification and retrieval of a music piece 
with accuracy of 60%, by using neural networks. In contrast, 
by using linear SVM classifiers, here we report partial 
classification accuracies of 76.5% and 100%. For fair 
comparison, however, the techniques to be compared should 
be evaluated on the same databases. 
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Fig. 1. Music sequence from ABBA’s song Take a chance on Me, 

and its first 11 details 
TABLE  II 

PERFORMANCE MEASURES 

C Recall Precision F-value 
1e6 0.73469        1 0.84706 
1e9 0.76531        1 0.86705 
1e12 0.69388       0.96333        0.8067 

V. CONCLUSION 

For describing short audio sequences, wavelet coefficients 
are very useful descriptors, since they can capture very small 
and delicate differences between time-varying signals. By 
using linear support vector machines, an accurate 
classification of audio sequences can be performed (partial 

accuracies of 76.5% and 100% for a two-class problem). Our 
work in progress involves expanded datasets and using SVM 
classifier in transformed space. Also, we will experiment on 
multi-class classification using generalized SVM paradigm. 
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