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Abstract – In this paper we present the advantage of non-

uniform over uniform threshold wavelet shrinkage denoising 
method, applied on noisy signals with signal dependent noise. We 
illustrate our results by comparing the noise energy after using 
the both filtration methods on the same set of artificially noise 
contaminated images. The experiments are made with NPR-
QMF filter banks instead with the filter banks that are 
commonly used in wavelet applications. 
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I. INTRODUCTION 

Lately, there are many developed methods for image noise 
filtration in a transformation domain [1-8]. In the last decade 
the stress on researches in this field is put on the signal 
processing in the wavelet domain. 

The reason of using the wavelet transform for denoising 
purposes is that adequately chosen wavelet basis groups the 
coefficients in two groups – one with a few coefficients with 
high SNR, and other with a lot of coefficients with low SNR. 
In case of white Gaussian noise, the noise level is same 
through whole signal and for all the wavelet coefficients, 
independently on the signal. So, choosing a global threshold 
shrinks all the coefficients for an equal portion. But, in some 
signals, like nuclear medicine (NM) images, the noise level is 
proportional to the local signal intensity. Obviously, denoising 
them with a global threshold is not the best solution.  

In this paper we present results obtained by using our non-
uniform threshold shrinkage method for removal of signal-
dependent noise. We illustrate that noise energy in the filtered 
signal is bigger when any global threshold is used compared 
to the case when the proposed non-uniform threshold is used. 
We disclose some results of denoising of standard test images 
when our method and known methods are used. The paper is 
organized as follows. The method uses standard wavelet 
filtering outlined in Section II. In Section III we discuss how 
to estimate the varying threshold. In Section IV we verify the 
validity of our approach on deterministic signals contaminated 
with signal dependent noise. At the end, Section V concludes 
the paper. 
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II. WAVELET SHRINKAGE METHOD 

The most popular form of conventional wavelet-based 
signal filtering [9], can be expressed by:  
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where s is noise-free signal, n is noise, s* is filtered signal, Ak 
and Di, i = 1, 2, …, k are approximation and detail coefficients 
at levels, i = 1, 2, …, k, respectively; and  

 hi=[h1i, h2i, …, hji]T , i=1,2, …, k,   

are weighting vectors of the corresponding detail coefficients. 
In case of conventional hard threshold filtering hji 

coefficients are determined by  
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while for the soft threshold filtering they are  
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where τk is user specified threshold for level k-details. 
Having in mind that the noise is proportional to the local 

signal intensity, instead of using a global threshold τk, Eq. (3), 
we propose: 
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where τjk is user specified threshold. 

III. NON-UNIFORM THRESHOLD DETERMINATION 

The approximation coefficients contain the signal identity 
and have the same size as the detail coefficients. So, if we 
assume that the noise is proportional to the local signal 
intensity then a non-uniform threshold vector τ could be 
expressed as 

 τ = α|A|, (5) 
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Fig. 1. Deterministic test noisy signals. 

where α is a constant parameter which could be determined 
by equalizing the energy:  
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of new coefficients D1 and A1 which are created from D and 
A, respectively by using the following reasoning.  

The detail coefficients D are like waves and they frequently 
change their polarity. Therefore, the coefficients between the 
positive and negative peaks have magnitudes that are close to 
zero. Therefore we can discard their contribution (by zeroing 
them in corresponding positions in D ) and 1 keep only the 
coefficients that correspond to the local extremes in D. 

Similarly, the vector A1 is constructed by zeroing the 
approximation coefficients A for those indices i where 
D1(i) = 0. 

 

  Fig. 3. (a) Dependence of the noise energy En on the uniform 
threshold τ; (b) Dependence of the noise energy En on τ after the 

variance stabilizing operation is applied. 

 A1 = A·sign(|D1|). (7) 

 

Since the coefficients D and αА have equal energy, but not 
exactly same form, it holds that if for some i, |D(i)| > αA(i) 
(the signal is less noise contaminated), then for some ј≠i, 
|D(ј)| < αA(ј) (the signal is more noise contaminated). 

In general, we can assume that for noise stands polynomial 
dependence on the local signal intensity, hence, for the 
threshold τ the following can be written: 

  (8) ,1,,0,)()()( 01 −=+++= LiiAiAi n
n ΛΛ ααατ

Fig. 2. Noisy images. 
where L is the length of the vectors A and τ. The coefficients 
α0, α1, … can be obtained by minimizing the square measure 
E1 in the smallest squares sense: 
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IV. EXPERIMENTAL RESULTS 

In this Section, we illustrate the effects of denoising the 
artificially contaminated signals (images) by applying the 
conventional shrinkage methods and our proposed non-
uniform threshold approach. The noise energy in the filtered 
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TABLE I 
COMPARISON OF THE PROPOSED WITH KNOWN METHODS IN 

CASE OF TRUE SIGNAL ESTIMATING IN THE TEST IMAGES IN FIG. 1 
 

signal is higher when any global threshold is used compared 
to the case when the proposed non-uniform threshold is used.  

The noise contaminated images are generated by 
superpositioning of shifted 2-D random Gaussian functions 
(cantered at position (i,j)) with energies proportional to the 
pixel intensities at position (i,j) in the noise-free images.  

By applying of the conventional and proposed method we 
obtain filtrated images s1 (normalized to the energy of the 
noise free images s), and compare with the energy of the noise 
free images by using the following formula 

  (10) ( .),(),(
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When the signal in Fig. 1(a) is filtered by using the 
proposed method (Eq. 5, 6), we obtained α = 0.0502 and En= 
1586. The proposed algorithm uses NPR-QMF filters with 
length 12, stop band frequency 0.7π, and overall 
reconstruction error of the designed QMF bank 0.001 [10]. In 
addition, we filtered the signal by using standard technique of 
wavelet shrinkage [9] and used different wavelets and 
different values of the uniform threshold τ. The graph for 
dependence of En on τ for values of τ between 0 and maximal 
intensity in the detail coefficients is plotted in Fig. 3(a). The 
threshold value τ = 0 means that all the detail coefficients are 
kept, while the value τ = 1 (which corresponds to a threshold 
equal to the maximal intensity in the detail coefficients) 
means that all the detail coefficients are discarded. From 
Fig. 3a it can be noticed that for any value of the uniform 
threshold, the energy of the remained noise is not smaller than 
1586. This comes from the fact that using a uniform threshold 

for removing signal-dependent noise is not an adequate 
solution. 

Similar results are presented in Fig. 3b. The graphs show 
dependence of En on τ after applying operation of variance 
normalization [1] on the images before they are filtered by 
using standard wavelet shrinkage. 

Further, we made experiments with the images in Fig. 1 and 
Fig. 2. They both contain signal-dependent noise with rather 
low SNR. The images in Fig. 1 are standard nuclear medicine 
test images, while the images in Fig. 2 are well known test 
images commonly used for comparing performances of 
different image processing techniques. The maximal intensity 
in all three images in Fig. 1 is 22. The performances of the 
applied filtration methods obtained with various wavelet-
based filtering methods, are presented in Table 1 in which  
SNR1 is signal-to-noise ratio for the generated images while 
ΔSNR is the improved signal-to-noise ratio (after the 
filtering). When the proposed method is used with two 
differently generated thresholds (last column) it can be 
noticed that the filtering with non-uniform threshold 
determined through energy equalizing (Eq. 6) gives better 
results compared to the filtering with non-uniform threshold 
determined through LS minimization of the square measure 
(Eq. 9). 

The results of filtering the images in Fig. 2 are shown in 
Table 2. They are similar to the results in Table 1. From both 
Table 1 and Table 2 the advantage of the non-uniform 
threshold shrinkage over the uniform threshold shrinkage is 
evident.  

ΔSNR Known methods ΔSNR Proposed 
algorithm 

Image SNR1 Wave-
let 

Visu 
Shrink 

Sure  Bayes 
Shrink

PRESS Variance 
stabilizing

Xu- 
Weaver

Bi 
Shrink

Prob Shrink 
Shrink   

[2]soft/hard [4] [6] [5] [1] [3] [7] [8] 

Energy 
equalizing
soft/hard 

LS 
minimization

soft/hard 
sym3 1.19/0.13 0.28 0,89 0.86 1.30 2.03 0,37 0.51 
sym5 1.19/0.14 0,28 0.88 0.86 1.29 1.79 0,33 0.50 
db3 1.19/0.13  0.28 0.89 0.86 1.30 2.01 0.37 0.51 

Phantom 2.92dB 

coif5 1.09/0.10 0.28 0.73 0.86  1.18 1.98 0.37 0.44 

+2.47dB 
/ 

+1.71dB 

+2.38dB 
/ 

+1.52dB 

sym3 4.00/1.65 0.21 4.08 1.35 3.50 3.36 1.14 2.04 
sym5 3.97/1.55 0.21 4.06 1.34 3.49 2.98 1.00 1.98 
db3 4.00/1.65 0.21 4.08 1.35 3.50 3.32 1.13 2.04 

Circles 4.38dB 

coif5 3.81/1.19 0.21 4.07 1.34 3.38 3.22 1.08 1.75 

+4.46dB 
/ 

+2.67dB  

+4.22dB 
/ 

+2.33dB 

sym3 2.71/2.02 0.17 2.14 0.99 2.61 2.24 1.23 1.87 
sym5 2.71/2.00 0.17 2.20 1.00 2.62 2.03 1.07 1.85 
sym7 2.74/1.97 0.17 2.22 1.00 2.64 2.20 1.18 1.84 
db3 2.71/2.02 0.17 2.14 0.99 2.61 2.22 1.23 1.87 
db6 2.74/2.04 0.17 2.21 0.99 2.64 2.22 1.24 1.88 

coif3 2.74/1.96 0.17 2.25 1.00 2.64 2.19 1.19 1.84 
coif5 2.74/1.89 0.17 2.30 1.00 2.66 2.19 1,17 1.80 

Bars 3.60dB 

bior9/7 2.70/1.96 0.17 2.19 1.00 2.60 2.14 1.14 1.85 

+2.85dB 
/ 

+1.89dB 

+2.73dB 
/ 

+1.68dB 
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TABLE II 
COMPARISON OF THE PROPOSED WITH KNOWN METHODS IN 
CASE OF TRUE SIGNAL ESTIMATING IN THE IMAGES IN FIG. 2 

 

V. CONCLUSION 

In this paper we compare non-uniform and uniform 
threshold filtering methods on denoising artificially noised 
deterministic test images. Experimental results show that for 
the signal-dependent noise filtering with non-uniform 
threshold outperforms uniform threshold filtering for any level 
of the threshold and all used wavelets we have experimented 
with.  
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ΔSNR Known methods ΔSNR  Proposed algorithm 

Image SNR1 Wave-
let 

Visu 
Shrink 

Bayes 
Shrink 

PRESS Variance 
stabilizing 

Xu- 
Weaver 

Bi 
Shrink 

Prob 
Shrink  

[2]soft/hard  [6] [5] [1] [3] [7] [8] 

Energy 
equalizing 
soft/hard 

LS 
minimization 

soft/hard 
sym3 5.00/4.68 2.81 1.49 4.38 3.72 2,13 3.83 
sym5 4.97/4.69 2.80 1.49 4.35 3.28 1.82 3.80 
db3 5.00/4.68 2.81 1.49 4.38 3.67 2,13 3.83 

coif5 4.98/4.70 2.80 1.49 4.33 3.47 1.88 3.80 
Lena 5.27dB 

bior9/7 4.90/4.62 2.79 1.47 4.27 3.61 1.96 3.75 

+5.10dB 
/ 

+3.04dB 

+4.81dB 
/ 

+2.63dB 

sym3 5.22/4.95 2.94 1.56 4.52 3.89 2.11 3.99 
sym5 5.14/4.87 2.89 1.56 4.47 3.39 1.80 3.96 
db3 5.22/4.95 2.94 1.56 4.52 3.87 2.11 3.99 

coif5 5.14/4.84 2.89 1.54 4.45 3.62 1.87 3.94 
House 5.76dB 

bior9/7 5.07/4.72 2.87 1.53 4.39 3.69 1.94 3.88 

+5.29dB 
/ 

+ 3.17dB 

+4.99dB 
/ 

+2.74dB 

sym3 4.58/3.99 3.19 1.42 4.00 3.48 1.69 3.27 
sym5 4.59/4.07 3.16 1.43 4.02 3.08 1.47 3.30 
db3 4.58/3.99 3.19 1.42 4.00 3.46 1.68 3.27 

coif5 4.58/4.13 3.11 1.43 4.02 3.23 1.49 3.49 
Camera 5.32dB 

bior9/7 4.54/3.97 3.15 1.42 3.96 3.33 1.58 3.26 

+4.71dB 
/ 

+2.86dB 

+4.46dB 
/ 

+2.50dB 

 

116 


