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Abstract – An equal gain combining (EGC) receiver for the 

binary phase-shift keying (BPSK) and quaternary phase-shift 
keying (QPSK) signals that propagate over Weibull fading 
channels is analyzed in this paper. We determine the bit error 
rate (BER) degradations caused by incoherently combining. The 
results clearly show the effects of imperfect reference signal 
recovery and fading severity on the EGC receiver performance. 
The numerical results are obtained by numerical integration 
with previously given accuracy and confirmed by Monte Carlo 
simulations.  
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I. INTRODUCTION 

In order to diminish the influence of multipath fading on 
signal detection, spatially separated receiver antennas at the 
receiver as well as combining signals from different receiver 
branches can be used. The diversity receivers with equal gain 
combining (EGC) technique are often used in practice. EGC is 
suboptimal combining technique which, at the exit of the 
combining circuit, achieves slightly smaller values of 
instantaneous signal-to-noise ratio when compared to optimal 
combining (MRC – maximum ratio combining), but is, on the 
other hand, relatively simple to implement and therefore often 
applied in practice. With this combining technique signals at 
all branches are cophased, equally weighed and summed to 
give the resultant output signal [1]. Cophasing eliminates 
random signal phase fluctuations occurring during 
transmission. The estimation of receiver signal phase is 
needed for cophasing. The estimation of received signal phase 
is accomplished by using a receiver modulated or 
unmodulated carrier. 

In the previous papers regarding this problem it was mainly 
assumed about incoming signal perfect carrier phase 
estimation, e.g. [2-3]. Only in papers [4-5] the influence of the 
imperfect estimation of the received signal phase to the 
system performance was discussed. Paper [4] discusses the 
phase  
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error influence on bit error rate (BER) values when detecting 
digital binary phase-shift keying (BPSK) and quaternary 
phase-shift keying (QPSK) signals.  The analysis was done 
under assumption that identical and statistically independent 
Rayleigh fading is present at receiver antennas. Paper [5] 
presents derived closed-form expressions for outage 
probability and average BER in detecting BPSK and QPSK 
signals transmitted over correlated Nakagami-m fading 
channels. EGC technique with dual branches is observed. 

Weibull distribution is very often used for fading modeling 
in urban environments in cases when Rayleigh distribution is 
inadequate. This distribution is empiric and is originally used 
as a statistical model for system reliability analysis [6-7]. It 
was shown in paper [6] that Weibull distribution gives best fit 
with measurement results for DECT (digital enhanced 
cordless telecommunications) systems working at 1.89 GHz. 
Also, the measurement results at 900 MHz presented in paper 
[7] show that this distribution can also be used and as a model 
of outdoor multipath fading. Fading model with Weibull 
distribution implies signal consisting of a cluster of multipath 
waves in nonhomogenous environment. The resulting 
envelope is obtained as a nonlinear function of the modulus of 
the multipath component sum. 

This paper presents the analysis of average BER in 
detecting BPSK and QPSK signals over Weibull fading 
channels. Receiver uses EGC technique. Receiver signal 
phase estimation is done from  unmodulated carrier and is not 
perfect. The difference between the incoming signal phase and 
estimated signal phase is stochastic process which has 
Tikhonov probability density function specified through 
standard deviation [4-5], [8]. It is shown to what extent an 
imperfect phase estimation influences BER values.  

II. SYSTEM MODEL 

Signal on i-th receiver antenna (Fig. 1) can be given as 
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where ri(t) is fading envelope, γi(t) is random phase shift 
which occurred during signal transmission over fading 
channel. Fading at each antenna is frequency nonselective, 
during one symbol it does not change, it is independent from 
symbol to symbol and there is no correlation between fading 
on different antennas. Probability density function of fading 
envelope is Weibull [1]: 
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where α is fading parameter, Ω=E{ri
α}, E{.} denotes 

mathematical expectations. It can be shown that n-th moment 
is [1] 
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where Γ(.) is Gamma function [9, eq. (8.310/1)]. The 
amplitude of useful signal is denoted with A and it can be 
assumed without loss of generality that it is equal to one. With 
φn we denote signal phase in which information about sent 
symbol is written. In the case of BPSK signal φn can have one 
of the following values: {0, π}, and in the case of QPSK 
signal φn can have one of the following values: {π/4, 3π/4, 
5π/4, 7π/4}. If we count that square mean value of signal 
envelope equals one 
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Zero mean Gaussian noise with variance σi
2 for i-th receiver 

branch is denoted with ni(t). Standard deviation of this 
Gaussian noise was given with 
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where M is the number of phase levels, (Eb/N0)i is average 
signal energy per bit to noise power spectral density ration for 
i-th receiver branch and is given in decibels. It is 

. ( ) ( ) ( ) 002010 //...// NENENENE bLbbb ====
After signal cophasing at all branches, the resulting signal 

after combining is 
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where L is the number of receiver branches. The difference 
between receiver signal phase γi(t) at i-th receiver branch and 
estimated phase ( )tiγ̂  at that receiver branch is denoted with 

( ) ( ) ( )ttt iii γγϕ ˆ−= . If phase estimation is done using phase-
locked loop (PLL) from unmodulated carrier and if only 
Gaussian noise is present in the phase-locked loop circuit, 
then probability density function of this phase error is [4-5], 
[8] 
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where I0(x) is modified Bessel function of the first kind and 
zero order for the argument x [9, eq. (8.406)], ζi is signal-to-
noise ratio in the PLL circuit at i-th receiver branch, which 
can be denoted through phase error variance σϕ

2 [4-5], [8] 
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Fig. 1. EGC receiver model 

 
After analysis of EGC receiver and mathematical 

manipulations it can be shown that the BER of BPSK and 
QPSK signal detection are given with 
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where erfc(.) is complementary error function [10, eq. 
(7.1.2.)], p ϕ(ϕ) is joint probability density function of the 
vector ϕ=( ϕ1, ϕ2,..., ϕL), which is, considering that ϕi, 
i=1,2,...L, are independent, given with 
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and pr(r) is joint probability density function of the vector 
r = (r1,r2,...,rL), which is, considering that also ri, i=1,2,...L, 
are independent, given with 
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III. NUMERICAL RESULTS 

Numerical results are obtained by applying both numerical 
integration and Monte Carlo simulation. In order to obtain 
BER of BPSK and QPSK signal detection it is necessary to 
perform numerical integration in terms (10) and (11). If we 
consider dual branch EGC receiver quadruple numerical 
integration occurs. Numerical integration was done by 
applying Gaussian type quadrature formulas along with 
increasing the number of nodes until previously assigned 
accuracy is achieved. The BER values are estimated on the 
bases of 4000 bit errors. In addition, minimum number of 
symbols that is used during evaluation of any BER value is 
104 and maximum 231-1 symbols are used in simulations. 

Figs. 2 and 3 show phase error deviation influence on 
average BER values of BPSK and QPSK signal detection. 
From Fig. 2, where presented results are related to BPSK 
modulation format, we can notice that curves of BER 
dependences on Eb/N0 almost overlap for σϕ values from 0o to 
15o. We can see from both figures, that for mean values of 
Eb/N0, the BER sharply decreases with the increase of Eb/N0. 
BER remains constant with Eb/N0 increase for large Eb/N0 
values. This BER floor depends on phase noise standard 
deviation value. For example, from Fig. 3 we can observe that 
BER floor increases from 3.3⋅10-6 to 2.1⋅10-3 if σϕ increases 
from 12.5o to 20o.  
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Fig. 2. Influence of phase error on BER for BPSK modulation 

 
The phase noise standard deviation influence on BER is 

more clearly shown in Figs. 4 and 5. It is obvious that QPSK 
modulation format is much more sensitive to the phase error 
than BPSK modulation format. Values of BER for BPSK 
modulation format have constant value of σϕ around 18o, after 
which they considerably increase. In the case of QPSK 
modulation format, values of BER are already starting to raise 
for σϕ around 8o. 

The influence of Weibull fading parameter on BER values 
for BPSK and QPSK detection is presented in Figs. 6 and 7. 
BER floor values, occur because of non ideal extraction of 
reference carrier, depend to certain extent on fading 
parameter. For example, during QPSK signal detection and in 
order to achieve BER=10-5 for α=4, Eb/N0 needs to be 15.4 

dB, while in the case of α=2 (increased severity fading 
compared to the previous case) needed value of Eb/N0 is 29.1 
dB. 
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Fig. 3. Influence of phase error on BER for QPSK modulation 
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Fig. 5. BER of dual EGC as a function of phase error deviation for 

QPSK and various values of Eb/N0 

145 



There is exceptionally good agreement between numerical 
results obtained by numerical integration and results obtained 
by Monte Carlo simulation. 
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Fig. 6. Influence of Weibull fading parameter on BER for BPSK 
modulation 
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Fig. 7. Influence of Weibull fading parameter on BER for QPSK 
modulation 

IV. CONCLUSION 

The presence of Gaussian noise in PLL circuit causes the 
random fluctuations of recovered carrier signal phase. In other 
words, regenerated phase has non zero standard deviation. 
This paper establishes the relation between the phase error 
standard deviation and the BER for EGC receiver during 
BPSK and QPSK signals detection that propagate over 
Weibull fading channel. By using the procedure and the 
results presented in this paper it is possible to calculate needed 
phase noise standard deviation value under the condition that 

previously assigned BER is not exceeded. Based on this it is 
possible to optimize the circuit for estimate incoming signal 
phase in order not to exceed this calculated value of phase 
error standard deviation. 

This paper shows that random phase error causes 
appearance of BER floor (Figs. 2 and 3). It is established that 
values of phase error standard deviation considerably affect 
values of this BER floor (Fig. 2 and 3). Results in Figs. 4 and 
5 show to what extent QPSK signal detection is more 
sensitive to the influence of non ideal incoming signal phase 
estimation than BPSK signal detection. As it was said before, 
during BPSK signal detection, BER values are almost the 
same until around σϕ=18o, while during QPSK signal 
detection BER considerably got worst already for σϕ=8o. It 
was shown to what extent fading parameters, in combination 
with non ideal phase estimation, influence BER values (Figs. 
6 and 7).  
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