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Abstract – In this paper an approach to design a high-order 

chaotic system with complex dynamics on the base of the well-
known Hide model is proposed. The resulted compound chaotic 
system is obtained using the principles of chaotic 
synchronization. A synchronization scheme between two 
compound systems, synthesized by the principle of linear-
nonlinear decomposition is also proposed. 
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I. INTRODUCTION 

During the last two decades a tremendous increase of 
interest in one specific field of the nonlinear science - the 
chaotic dynamics, is observed. This is mainly due to the fact 
that these systems have some properties, which are common 
as for the stochastic systems as well as for the systems with 
regular behaviour. It was found that the chaotic systems, due 
to their intrinsic features, such as a strange attractor in the 
phase space and a positive Lyapunov exponent, can be used 
for data protection in secure communication systems or for 
encrypting text or images. Such systems are based on a 
phenomenon, called chaotic synchronization, where two or 
more chaotic systems tune their dynamics to each other. 

Most of the known models of chaotic systems are of low-
order – mostly third-order continuous chaotic models and 
two- or third-order discrete chaotic models are known so far. 
Few fourth-order continuous models and very few fifth- and 
high-order chaotic models are known. At the same time, it 
was found that the high-order chaotic systems usually possess 
more complex dynamics, compared with the low-order 
models, which can be a significant advantage in the chaotic 
data protection systems. Using such systems, a higher degree 
of data security can be achieved. 

In this paper a simple yet reliable approach for designing 
high-order chaotic models is proposed. It is based on the 
partial replacement chaotic synchronization method. The well-
known Hide third-order chaotic model is used to build a sixth-
order compound chaotic system. As the main potential 
application of such system is in data protection systems, some 
synchronization schemes between two compound Hide 
systems are proposed. The standard linear-nonlinear 
decomposition synchronization approach and a new 
modification of it are used for the schemes. This approach has 
one significant advantage over the other known 
synchronization methods – it allows precise stability analysis. 
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II. BUILDING COMPOUND CHAOTIC SYSTEMS USING 
CHAOTIC SYNCHRONIZATION PRINCIPLE 

Every continuous chaotic system can be presented in the 
form: 

                                      ,                                  (1) ( )t,xfx =&

where  and nℜ∈x ( )t,xf  is a nonlinear function of the state 
variables. 

The chaotic synchronization problem can be formulated in 
the following way: given two (or more) identical chaotic 
systems of type (1), one has to find a proper coupling between 
them, such that the two systems evolve identically when they 
are started from different initial conditions [1]. In the case of 
uni-directional coupling the system providing the coupling is 
called Master system, and the other system – Slave system. 

Different synchronization methods exist depending on the 
type of the coupling. By the popular partial replacement 
method [5] if the Master system is described by Eq. (1), the 
Slave system is defined with: 

                                ( txi ,, )~~ xfx =& ,                                  (2) 

where nℜ∈x~  is the state vector of the Slave system, 
( ) ( )xi , tt ,~,~ xfxf =  and  is a state variable from the Master 

system which substitutes the corresponding variable 
ix

ix~  only 
on one position in the Slave system’s model. 

Apparently many possible substitutions in the form of Eq. 
(2) exist for a given pair of chaotic models. Generally by the 
synchronization problems one has to find such coupling that: 

                                      ,                                  (3) 0)(lim =
∞→

t
t

e

where: 

                                       )(~)()( ttt xxe −=                              (4) 

is the error function between the two state vectors. 
If, on the contrary, the coupling is chosen in such way that: 

                                    ,                              (5) )()(lim tmt
t

=
∞→

e

where  is chaotic function, the two chaotic systems (1) 
and (2) can be assumed as one compound chaotic system of 

-th order. 

)(tm

n2
In this case it is obvious, that due to the coupling the 

dynamics of the Slave subsystem of the compound system (1)- 
(2) will be subjugated to the Master subsystem and the two 
subsystems can be viewed as a high-order chaotic generator. 
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This concept can be generalized for cases, when the 
parameters of Eqs. (1) and (2) are not equal, as is common 
with the basic synchronization problems. Then the Master and 
the Slave subsystems are: 

                                ,                                    (6) ( t,,pxfx =& )
)                                ,                               (7) ( txi ,,~,~~ pxfx =&

where pp ~≠  are the parameter vectors of the two systems. 
It is even possible to apply this principle to two completely 

different chaotic systems: 

                                ,                                    (8) ( t,,pxfx =& )
)                                ,                              (9) ( txi ,,,qygy =&

where  is the state vector and q  is the parameter 
vector of the Slave subsystem. 

mℜ∈y

The presented technique allows to artificially obtain high-
order software chaotic generators with complex dynamics 
when such is needed in particular applications. Using this 
principle, one can also couple more than two simple chaotic 
systems and obtain a compound system of even higher order. 

III. HIDE CHAOTIC SYSTEM 

The Hide’s model describes an electro-mechanical system 
with chaotic behaviour [4]. Since the model will be used only 
as an abstract chaos generator in this paper, the exact system 
which it describes will not be discussed here. The model’s 
equations are: 

                                                       (10) 
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where the nominal values of the system parameters, for which 
the system exhibits chaotic behaviour, are: ,2=β  ,20=α  

2.1=λ  and . 1=k
The system’s typical chaotic attractor, built up from a 

virtually infinite number of unstable periodic orbits, confined 
in some basin in the phase space, is shown on Fig. 1a. A 
Poincare section in the plane  for  is shown on 
Fig. 1b. The form of the Poincare section confirms the chaotic 
nature of the system. 

),( 31 xx 62 =x

 
 
 
 
 
 
 
 
 
                              a.                                                 b. 

Fig. 1. Presence of chaos in the Hide system. a - chaotic attractor,      
b – Poincare section  

 

IV. COMPOUND 6-TH ORDER CHAOTIC SYSTEM ON 
THE BASIS OF HIDE’S SYSTEM 

A synchronization scheme of the type of Eqs. (6) and (7) is 
built for the Hide’s model. The Master subsystem is described 
by Eq. (10). After some research, a coupling that satisfies Eq. 
(5) is found. The coupling variable is  in the second 
equation of the Slave subsystem: 

2x

                            

.~~~~

,
~

)~1(~~
,~~~~~~

313

2
2

12

31211

xxx

xkxx

xxxxx

λ

α

β

−=

−−=

−−=

&

&

&

                         (11) 

The parameters of Eq. (11) are chosen to be different from 
those of Eq. (10): ,2.2~

=β ,22~ =α 3.1~
=λ  and 1.1

~
=k . 

For convenience the compound system (10)-(11) can be 
rewritten assuming that [ ] [ ]TT xxxxxx 654321

~~~~ ==x : 
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It was proved by simulation with Simulink that for the 
chosen coupling Eq. (5) holds. The state space of the error 
function iii xxeeee ~),,,( 321 −= , is shown on Fig. 2a. It is 
evident that the error system attractor is chaotic. The attractor 
of the Slave subsystem is shown on Fig. 2b. Apparently, this 
attractor is of completely different shape, compared to the 
attractor of the Master subsystem, shown on Fig. 1a. Thus, by 
the simple coupling with the  variable the dynamics of the 
Slave subsystem becomes conjugated to that of the Master 
system, it is chaotic too, but different from the basic Hide 
attractor and therefore the compound system, described by Eq. 
(12) can be considered as a 6-th order chaotic generator. 

2x

 
 

 
 
 
 

 
 
                              a.                                                 b. 

Fig. 2. Compound Hide system. a - attractor of the error function,      
b – attractor of the Slave subsystem  

 
To confirm the complex dependence between the variables 

of the Master and the Slave subsystems of the Hide’s 
compound system, two of the „mixed” state subspaces, 
formed by variables of x  and x~ , are shown on Fig. 3. The 
attractors in the subspaces  and  are ),( 4xx , 21 x ),,( 532 xxx
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apparently chaotic and of different shape and size, compared 
to the basic Hide attractor. 

 
 

 
 
 
 

 
 
                              a.                                                 b. 

Fig. 3. Attractor of the compound Hide system.                                  
a - subspace,  b - subspace  ),,( 421 xxx ),,( 532 xxx

V. SYNCHRONIZATION BETWEEN TWO COMPOUND 
HIDE SYSTEMS 

Given the compound Hide system, it is important to find 
some stable synchronization schemes between two such 
identical systems with a view to the possible application of 
this system in data protection systems. 

Two different synchronization schemes on the basis of the 
linear-nonlinear decomposition method are presented 
below. This synchronization approach [7] is recommended for 
cases, when the precise stability analysis of the 
synchronization manifold is crucial. The essence of the 
method is in the following: given a continuous chaotic system 
of type (1), one can separate the linear and the nonlinear 
parts of the system, if this is possible, in the following way: 

                            ,                      (13) )),(()()( tttt xhАxx +=&

where  contains all nonlinear terms of Eq. (1) and 
the  matrix contains the linear terms.  

)),(( ttxh
А

If Eq. (13) is assumed to be a Master system, the Slave 
system is built as a copy of the linear part of (13), driven by 
the nonlinear terms: 

                             )),(()(~)(~ tttt xhxAx +=& .                     (14) 

The error system, obtained by subtracting (14) from (13), is 
then a linear system: 

                          )())(~)(()( tttt АexxAe =−=& .                (15) 

Thus, the stability of the synchronization manifold is 
proven simply by calculating the eigenvalues of the  
matrix. 

А

Given the compound Hide system with Eq. (12), it can 
easily be decomposed in the form of  Eq. (13) with linear part: 
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and a nonlinear part: 

                            .                           (17) 
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Then, if Eq. (12) is the Master system of the 
synchronization scheme, the Slave system is: 
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The stability of the synchronization scheme, defined by 
Eqs. (12),(18) can be proved by calculating the eigenvalues of 
Eq. (16), which for the given set of parameters are: 

   jj 5.11.1,4.11.1, 1- , 0 5,63,421 ±−=±−=== ρρρρ .  (19) 

A synchronization scheme is stable and Eq. (3) is fulfilled 
when all eigenvalues of the  matrix are with negative real 
parts. However, if the maximum eigenvalue is zero, as is the 
case here, a more complex type of synchronization between 
the systems (12) and (18) occurs. It is called marginal 
synchronization [3,6] and is characterized by: 

А

                                      ,                               (20) ct
t

=
∞→

)(lime

where c is a constant, depending on the initial conditions of 
the two systems. 

The synchronization scheme is simulated with Simulink 
and the presence of marginal synchronization was confirmed. 
The only variable of the error vector e, different of zero, is 

555
~xxe −= . For the chosen set of initial conditions - 

[ ]T513132)0( =x  and [ ]T422223)0(~ =x ,  
the non-zero error is 1.25 =e

)5(x
. It was found that only the 

initial conditions   and )5(~x  affect the value of . For 
example changing 

5e
)5(~x  to 5 gives marginal synchronization 

with 1.55 =e . The error dynamics is shown on Fig. 4.  
 
 
 
 
 
 
 
 
 

                             a.                                                      b. 
Fig. 4. Error dynamics. a - , b -   )(),(),(),(),( 64321 tetetetete )(5 te
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The time series of  and 5x 5
~x  are shown on Fig. 5a. Here 

the interesting phenomenon of two chaotic signals evolving 
equally, but with constant separation from each other, can be 
seen. Fig. 5b shows the projection of the combined attractor of 
the two compound Hide systems in the phase plane )~,( 55 xx . 

On Fig. 7 the time evolution of  and 5x 5
~x , and the phase 

plane )~,( 55 xx  are shown. Apparently the two chaotic signals 
evolve identically, such is the case for all other pairs ii xx ~, . 
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                             a.                                                      b. 
Fig. 5. Marginal synchronization. a - )(~),( 55 txtx

)
,                            

b – phase plane ~,( 55 xx  

 
In order to search for different types of synchronization, 

namely identical synchronization of type of Eq. (3), the linear-
nonlinear decomposition method can be further extended by 
introducing a linear feedback coupling into the Slave system: 

             ,       (21) ))(~)(()),(()(~)(~ tttttt fb xxEαxhxAx −++=&

where   is the coupling gain vector and E is the coupling 
matrix. 

fbα

Thus, the error system remains linear:  

                                  ,                         (22) )()()( tt fb eEαАe −=&

but now there exist many possibilities to tune the coupling by 
introducing different types of feedback. 

If in the synchronization scheme (12),(18) a feedback 
coupling with  is introduced, i.e. the 
fifth equation of the Slave system is changed with: 

[ 0100000=fbα ]

                     ,)~(10~~
)1(~~

552
2
45 xxxkxx −+−−= α&            (23) 

the eigenvalues of the linear  matrix are: )( EαА fb−

 jj 5.11.1,4.11.1, 10- , 1 5,63,421 ±−=±−==−= λλλλ ,  (24) 

and because all of them are with negative real parts, the 
synchronization scheme is stable and identical 
synchronization will occur. 

The simulation results for the modified feedback coupling 
with Eq. (23) are presented on Fig. 6. 

 
 
 
 
 
 
 
 
 

                             a.                                                      b. 
Fig. 6. Identical synchronization. a - ,b - )()( 31 tete ÷ )()( 64 tete ÷  

 
 
 
 
 
 
 
 

                             a.                                                      b. 
Fig. 7. Identical synchronization. a - )(~),( 55 txtx

)
,                              

b – phase plane ~,( 55 xx  

V. CONCLUSION 

The proposed approach to build high-order compound 
chaotic systems provides a simple yet efficient tool to 
generate complex chaotic dynamics. Such kind of ostensibly 
random signal can be used to hide the information signal in 
different kind of data protection systems – communication 
systems over the Internet or by radio waves, systems for 
encrypting text and images etc., which were proposed so far in 
the real world [2]. In the core of such systems there is always 
a stable chaotic synchronization scheme.  

The applicability of the compound Hide system to build 
synchronization schemes was shown with two schemes, 
designed using the linear-nonlinear synchronization approach. 
The marginal synchronization, achieved by the basic linear-
nonlinear coupling, is dependent on the initial conditions, and 
this can be used to achieve a higher security level in data 
protection systems.  

REFERENCES 

[1] Boccaletti, S., J. Kurths, G. Osipov, D. Valladares, C. Zhou. 
The synchronization of chaotic systems. Physics Reports 366 
(2002), pp.1-101. 

[2] Chen, G. et.al. Chaos-Based Still Image Encryption; Chaos-
Based Secure  Voice Communication;  Chaos-Based Optical 
Communication System - Centre for Chaos Control and 
Synchronization, Hong Kong http://www.ee.cityu.edu.hk/~cccs. 

[3] Guemez, J., C. Martin, M. Matias. Approach to the chaotic 
synchronized state of some driving methods. Physical Review 
E, Vol.55, No.1, 1997, pp.124-134. 

[4] Hide, R., A. Skeldon, D. Acheson. A study of two novel self-
exciting single-disk homopolar dynamos. Theory, Proc. R. Soc. 
London, A452, pp.1369-1395 

[5] Pecora, L., T. Carroll, G. Johnson, D. Mar, J. Heagy. 
Fundamentals of synchronization in chaotic systems, concepts, 
and applications. Chaos 7(4), 1997, pp.520-543. 

[6] Shahverdiev, E. Marginal hyperchaos synchronization with a 
single driving variable. arXiv:chao-dyn/9808013 v1, 1998,   
pp.1-4. 

[7] Yu, H., L. Yanzhu. Chaotic synchronization based on stability 
criterion of linear systems. Physics Letters A, Vol. 314, Issue 4, 
2003, pp.292-298. 

5x

5x  

5x
 ~

5x
5

~x
5x  

t  

4e

5e  
6e

t  

5
~x  5

~x  

t

 1e
 2e

3  e

t  


