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Abstract – In this paper synchronization schemes for the Hoff 

fourth-order hyperchaotic system are proposed. The schemes are 
designed in such way, that the most economical possible coupling 
between the master and the slave systems is applied. This is 
achieved firstly, by finding a fast synchronization scheme with 
only one-variable coupling, and secondly – by applying the 
coupling not constantly, but only for short periods of time. 
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I. INTRODUCTION 
 

Recently there has been growing interest in the 
investigation of the chaotic synchronization phenomenon. 
Being nonlinear systems with very special type of dynamic 
behaviour, more common to the stochastic systems, the 
chaotic systems were long considered as non-usable in the 
real-world. Moreover, the chaos was counted as a harmful and 
non-controllable system state. After 1990, control methods for 
chaotic systems were invented with the aim to stabilize a 
given chaotic system in a fixed-point or in a periodic orbit. 
Then, it was found that chaos can also be useful, and even 
methods for artificially generating chaos in a preliminary non-
chaotic nonlinear systems were proposed. Such is the case in 
some processes of chaotic mixing in chemical reactors, where 
the efficiency is increased when the species are fed chaotically 
in the reactor. 

Another field of interest is the implementation of chaotic 
systems in secure communication systems, where the pseudo-
randomness of the chaotic signal is used to mask the 
information signal. Such systems are based on a very 
interesting phenomenon, observed by chaotic systems - the 
chaotic synchronization. It was found that two or more chaotic 
systems can synchronize their dynamics and evolve 
identically and at the same time pseudo-randomly, when a 
suitable coupling is applied between them. Recently, the 
designing of the synchronization coupling was evolved in a 
major task in the nonlinear science. Many different kinds of 
chaotic synchronization methods are proposed so far, each 
with its advantages and drawbacks, but what is common, is 
that no universal chaotic synchronization method exists, 
which can always guarantee the synchronization between a 
given pair of chaotic systems. This fact predetermines the 
constant research in this field and frequently new 
synchronization methods and new modifications of the 
existing  ones  are  proposed.  Every   synchronization method  
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can be suitable in some cases and non-usable in others. Some 
methods aim at increasing the speed of the synchronization, 
others – at the simplicity of the synchronization scheme, third 
– at the strong analytical proof of synchronization stability. 

In this paper synchronization schemes that satisfy the 
possible requirement for a most-economical type of coupling 
between the systems, subjected to synchronization, are 
proposed. This is achieved by two main approaches. First, a 
stable synchronization scheme with only one master-system 
variable, used for the coupling, is designed. To achieve 
synchronization, a method called combined synchronization 
approach, is used. This method was proposed by the author 
earlier and has the advantage of offering many possible 
couplings between the systems, of which one can choose the 
most appropriate, in particular the fastest one-variable 
coupling is chosen for the given case. The second technique, 
applied in terms of the economy, is based on the principle, 
that no continuous coupling is necessary to achieve 
synchronization for most of the known chaotic systems. So, 
the coupling is switched on only for short periods of time, 
chosen carefully, and between them the two systems evolve 
independently.  

The experiments are conducted with computer simulations, 
using the fourth-order Hoff hyperchaotic system as a basis for 
the synchronization schemes. However, the proposed 
technique is not confined only to this system and can be used 
with most of the known continuous chaotic models after some 
research on the particular system’s properties. 

  
II. PRINCIPLES OF CHAOTIC SYNCHRONIZATION 

 
The synchronization of chaotic systems is a phenomenon, 

by which two or more such systems synchronize their 
dynamics in some way. Although synchronization between 
two completely different chaotic systems is possible 
(generalized synchronization), one usually deals with the so 
called identical synchronization – given two identical chaotic 
systems, being started from different initial conditions, one 
has to find a coupling between them, such that their dynamics 
become synchronized and they evolve identically in time. In 
general, in the case of a one-way coupling, which is more 
common, the two chaotic systems (called master and slave) 
can be presented in the form [1]: 

               Master      ( )t,xfx =& ,                                       (1) 

               Slave         ( t,, )~~ xxfx =& ,                                   (2) 

where , nℜ∈x nℜ∈x~  are the state vectors of the two 
systems. 

A basic scheme of the synchronization principle is shown 
on Fig. 1. 
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Fig. 1. Basic synchronization principle 
 
The coupling between the Master and the Slave systems has 

to be designed in such way that: 

                                      0)(lim =
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where )(~)()( ttt xxe −=  is the “error” between the states of the 
two systems. 

It was found, that continuous coupling is not always needed 
to achieve synchronization. Some schemes with occasional 
coupling were proposed [2,5,6]. The common with them is the 
principle, that two chaotic systems can synchronize if the 
coupling signal is active only for short periods of time. The 
slave system is then defined by: 

               Slave         ( t,, )~~ uxfx =& ,                                   (4) 

where u is a periodic function with period T, defined by: 
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and  is the time, during which the synchronization 
signal from the master system is fed into the slave system. 

TTsyn ∈

The principle of this impermanent coupling is shown on 
Fig. 2. The switch is controlled by the pulse generator. 

Many synchronization approaches are proposed so far. In 
general, they can be divided into two main groups – 
decomposition ones, by which the master system is 
decomposed in two parts and one of them is used as a coupling 
signal; and methods with feedback in the slave system. What 
is common between all of them, is that each approach permits 
several variants to design the coupling for a given pair of 
chaotic systems, but there is no guarantee, that a particular 
variant of a particular synchronization approach will give 
stable synchronization for a particular chaotic system. That is 
to say, no universal synchronization approach exists. Then if 
one can specify a synchronization method, which retains the 
advantages of the known methods, but gives much more 
possible variants to design the coupling, the possibility of 
finding a stable scheme is greater and the method will be more 
universal. 

By the so called combined synchronization approach, 
proposed by the author, the coupling scheme is designed  as a 
combination  between two known synchronization methods- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Synchronization with impermanent coupling 
 

partial replacement [3,8] and one-way feedback [1,7]. The 
master and the slave systems are defined with: 

        Master     ( )ix,xfx =& ,                                              (6) 

          Slave        ( ) ( xxExfx )~,~~ −+= αix& ,                          (7) 

where  is a master system variable, which according to the 
partial replacement principle substitutes its corresponding 
slave system variable in only one position of the slave 
system’s model. Thus several coupling combinations are 
possible for a given chaotic model. The second coupling is the 
feedback-type term 

ix

( )xxE ~−α  in Eq. (7), where α  is the 
coupling gain and E is the coupling matrix, which determines 
which difference ixix ~−  is introduced in which equation of 
the slave system’s model. 

Apparently, by simultaneously applying the two principles 
described above, many different coupling variants are 
possible, much more than those obtained by applying only 
partial replacement (PR) or only feedback coupling (FC). If 
for a given system p PR variants and q FC variants are 
possible, the combined approach will give pxq variants. Then 
one can choose the most appropriate from this vast number of 
variants, for example the variant with the fastest 
synchronization, or in terms of the problem discussed here – a 
variant which uses only one variable if economical coupling is 
aimed. Additionally, the fastest of all variants with only one 
particular variable  can be chosen. ix

To make the coupling even more economical, the principle 
of impermanent coupling can also be applied to the combined 
synchronization method. The slave system model (7) is then 
changed by:                         

          Slave       ( ) ( xuExfx ~,~~ −+= αiu& ) ,                          (8) 

where u is defined by Eq. (5). 
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III. ONE-VARIABLE SYNCHRONIZATION SCHEME FOR 
THE HOFF HYPERCHAOTIC SYSTEM 

 
To illustrate the synchronization technique, described in 

Section II, a well-known hyperchaotic model is used. 
Hyperchaotic systems possess two or more positive Lyapunov 
exponents, which define the setting apart of two orbits in state 
space, started very close to each other. Such systems have 
more complex behaviour than “regular” chaotic systems with 
one positive Lyapunov exponent and are preferable in chaotic 
communication systems. 

The Hoff hyperchaotic system [4] is a model of a chemical 
reactor and is described by the equations: 

                                              (9) 
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where the hyperchaos is most evident for ,10,24.0 == ba  
. 100,01.0,20 === nec

Notwithstanding that the Hoff system describes a chemical 
reaction, its equations can be used as a reliable software 
chaotic generator with possible application in data-protection 
systems. To make use of this, one has first to design stable 
and fast synchronization scheme. 

Since the task is to design a one-variable coupling, it will 
be assumed that only  is accessible. Before the application 
of the combined synchronization method, the partial 
replacement and feedback coupling with  are tested alone. 
It was found, that the best results of five possible -
couplings are achieved when this variable substitutes 

1x

1x

1x

1
~x        

in the fourth equation of the slave system – the transient 
before the two systems synchronize is about 7 simulation 
seconds. By applying only the feedback -coupling, the 
fastest synchronization is for 

1x
2=α  - about 10 seconds. After 

consecutively testing all possible -couplings of the 
combined synchronization method, it was found that the best 
results are achieved for the following variant of the slave 
system, designed according to Eq. (7): 

1x

and [ ]T1114)0(~ =x

x

1x

. The length of the transient does not 
depend on the initial conditions, so the results are 
representative for all admissible initial conditions. 
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The systems (9) and (10) are respectively the master and 
the slave system of the synchronization scheme, designed 
according to the combined principle of Eqs. (6) and (7). The 
two systems synchronize for about 4 seconds for 1=α  (the 
fastest result for all possible values of α ), as can be seen on 
Fig. 3, where the error functions )(~)(txi=

re 3)0 =

)(tei

 (x

txi−

[ 03

 are 

presented. The initial conditions a ]T0  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Error functions for -coupling 1x
 

The exploiting of the variants with only -, - and -
coupling shows, that no stable synchronization exists for 
every possible only - or only -couplings of the 
combined synchronization method and the fastest 
synchronization, achieved for -coupling is with about 7 
seconds transient. Thus, the synchronization scheme (9)-(10) 
is the fastest of all possible one-variable coupling 
synchronization schemes. 

2x 3x 4x

2 3x

4x

 
IV. SYNCHRONIZATION WITH IMPERMANENT 

COUPLING 
 

The -synchronization scheme, defined in Section III is 
the fastest one-variable coupling scheme for the Hoff system. 
If the aim is to find not only the fastest coupling with one 
variable, but to make it more “economical”, if possible, the 
principle of impermanent coupling, defined in Section II, can 
be applied to the combined synchronization scheme, defined 
with Eqs. (9) and (10). To do this, one has to research: 

- what is the minimum possible length of synT  to 
guarantee stable synchronization? 

- what is the maximum admissible length of the period 
T  of the driving signal  u from Eq. (8)? 

The simulation experiments show, that if sTsyn 7< , i.e. the 
-coupling is fed to the slave systems for less than 7 

seconds, the systems cannot synchronize. 
1x

So, if one choose for example T , the next step is to 
determine a suitable value for the signal period T. This is done 
by applying only one synchronization pulse T  to the 
synchronization scheme and let the two systems evolve 
unconnected to see when they will begin to desynchronize. 
The error functions for this case are shown on Fig. 4. The 
coupling is applied only for the first 10 seconds. It is evident, 
that for the next 70-80 seconds the unconnected systems 

ssyn 10=

syn
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remain synchronized. Only after that they begin to evolve 
independent from each other. 
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Fig. 4. Error functions with one-pulse coupling 
 
Then, the minimum admissible period of the driving signal 

u which will guarantee uninterrupted synchronization between 
the master and the slave systems must be  for the case 
when . The error functions for 

sT 80≈
TsynsTsyn 10= s10=  and 

 are shown on Fig. 5. The moments of activation of 
the connection between the systems are marked with arrows. 
The length of the transient before the initial synchronization is 
achieved is the same as in the permanent-coupling scheme 
from Section III – about 4 seconds. 

sT 80=

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Error functions with impermanent coupling 
 
It was found however, that the minimum admissible length 

of the period T of the driving signal u depends of the value of 
the synchronization pulse . synT

For example, if , the two systems run 
synchronuously only for about 50, not 80 seconds as above, so 
a suitable value for T will be e.g. . The simulation 
with  and T  gives exactly the same results as 
in the previous example. 

sTsyn 8=

s40
sT 40=

sTsyn 8= =

On the other hand, if sTsyn 16= , the two systems 
desynchronize their motion about 150 seconds after the initial 

synchronization pulse is applied. Then, in order to achieve 
continuous synchronization, a suitable value for the driving 
si

be found only after consistent initial simulation 
experiments. 
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The principle of economic coupling if often aimed in 
practical chaotic synchronization tasks. The two main aspects 
of this concept – a one-variable coupling scheme and a non-
continuous coupling between the systems, subjected to 
synchronization, can be applied simultaneo

ample with the Hoff hyperchaotic system.  
First, by applying the combined synchronization approach, 

the most suitable one-variable synchronization scheme for the 
particular case is selected. Usually, this is the variant with the 
fastest synchronization in terms of the possible application for 
designing a chaotic communication system, where the ability 
of the chaotic systems in the transmitter and in the receiver to 
synchronize swiftly if very important. The combined 
synchronization method offers a vast number of possible 
combinations for the systems’ coupling, so after some initial 
research

und. 
Second, by applying the principle of impermanent coupling, 

one can synchronize two chaotic systems only with short 
synchronization pulses. There is no need to maintain the 
systems continuously connecte
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