

Hardware Implementation of a Space Vector PWM
Technique Using SystemC and VHDL Autocoding

Zivorad R. Mihajlovic1, Milan S. Adzic2, Evgenije M. Adzic3

Abstract – This paper deals with application of SystemC
language for modeling and implementation of pulse-width
modulation technique, wide used in vector control of
standard AC drives. Software implementation of
SVPWM require much of processor's time which is necessary
for real time execution of complete control structure. This paper
considers possibility of SVPWM hardware acceleration.
Hardware equivalent of SVPWM modulator was developed
based on SystemC model and using SystemCrafter SC tool for
automatic VHDL code generation.

Keywords – SystemC, VHDL Autocoding, Space Vector PWM,
hardware implementation.

I. INTRODUCTION

 Nowadays, the main quailty of general motor drives for
house appliance is observed through economic aspects.
Market competition is now very strong, with frequently
changes in standards and requirements, which lead to time-to-
market reduction. The main part of the production price
represents development costs, particularly for software. The
size and requirements of algorithms that have been
implemented in embedded control units has increased
dramatically. Programming control units in standard
languages, such are assembler and C, is not acceptable
anymore. More flexible approach is required, as modeling on
high level abstraction. It is recommended to separate hardware
and software components on this level. Due to high price of
software development, the aim is to implement part of the
algorithm into the cheaper hardware. Already in start,
software development is delayed expecting newer, cheaper
and more reliable hardware, as with slow communication
between software and hardware engineers. Hardware-software
codesign represents useful technique for product acceleration
[1, 3]. In this case a software and hardware engineers works
on the same development tool.
 SystemC language represents modeling tool for
hardware-software codesign. It can simulate the hardware
and software partitions in the same framework. It consists of a
set of class libraries for C++ that describes hardware
constructs and concepts.

1Zivorad R. Mihajlovic is with the Faculty of Technical Sciences,
Trg D. Obradovica 6a, 21000 Novi Sad, Serbia, E-mail:
zivorad@uns.ns.ac.yu

2Milan S. Adzic is with the Technical faculty in Subotica, Marka
Oreskovica 16, 24000 Subotica, Serbia, E-mail: adzicm@vts.su.ac.yu

3Evgenije M. Adzic is with the Faculty of Technical Sciences,
Trg D. Obradovica 6a, 21000 Novi Sad, Serbia, E-mail:
evgenije@uns.ns.ac.yu

This means that it could be used to develop cycle-accurate
models of hardware, software and interfaces, which could be
simulated and debugged within existing C++ development
environment [2]. For that reason it allows fast and easy
verification of complex algorithms.
 SystemC was originally developed as a system modelling
and verification tool, but still require manual translation to a
hardware description language to produce hardware.
SystemCrafter SC automates this process, by quickly
synthesizing SystemC to RTL VHDL or Verilog [3]. It will
also generate a SystemC description of the synthesized circuit,
which can be used to verify the generated code using existing
test environment.

D
C

 bus dinam
ic brake

control

Period/D
uty counters

Period/D
uty counters

Fault

Select

A
nalog

speed
reference

EEPR
O

M

C
onditional
circuit

C
onditional
circuit

Fig. 1. Vector control system encapsulated on FPGA circuit.

215

 In this paper, attention is to indicate the advantages of this
approach on the example in designing a platform for complete
drive system. The solution anticipates that all numerical
intensive parts of the code (modulator, coordinate
transformations, controllers, state and parameters estimators)
are transferred to hardware by usage of SystemC language and
SystemCrafter SC autocoding tool (Fig. 1). These steps are
given on example of space vector pulse-width modulator
(SVPWM) which is used for control a three-phase inverters in
order to produce variable sinusoidal output voltage.

II. SPACE VECTOR PULSE-WIDTH MODULATOR

 One of the most numericaly extensive part of the code for
vector control of AC drives is SVPWM. Switching frequency
is required to be relatively high, above 16 kHz, in order to
achieve high bandwidth torque control and to minimize noise.
For that reason there is not enough computing time for
calculation of complete control task. Usage of hardware
implemented SVPWM and providing the user proper
interface, could be solution for this problem. Moreover,
complete vector control drive system could be translated to a
hardware component, which would dramatically shortened
design time. In that case, user could readily evaluate
performance of vector control without spending development
effort usually required in the traditional DSP based system.

Fig. 2. SVPWM module with inputs Vα
 REF i Vβ

 REF.

 It is known that a balanced three-phase set of voltages is
represented in the stationary reference frame by a space vector
of constant magnitude, equal to the amplitude of the voltages,
and rotating with angular speed ω = 2π·fREF [5]. So, space
vector is represented by two components, named alpha and
beta. The space vector module can create the PWM switching
pattern for three-phase inverter using directly the referent
alpha and beta voltage components, Vα

REF and Vβ
REF (Fig. 2).

Current control is done in synchronous rotating reference
frame where sinusoidal AC signals, like Vα and Vβ, became
DC quantities, known as d and q components [5]. SVPWM
technique is mostly used for digital current control, giving to
the linear current regulators full control over the output
voltage d and q components. These d and q components,
defined on the current regulators outputs, are transfer back to
the stationary alpha beta coordinate system and passed thru to
the space vector modulator. As it could be seen in Fig. 3, the
eight possible states of an inverter are represented as two null-
vectors (V0, V7) and six active-state vectors forming a hexagon
(V1-V6). SVPWM approximates the rotating reference vector
in each switching cycle by switching between the two nearest
active-state vectors and the null-vectors. The main task of

space vector modulator is to calculate the needed vector times
directly from Vα

REF and Vβ
REF.

 The connection between the Vα
REF and Vβ

REF and needed
active and zero vector times is easy to be understood looking
in Fig. 3. Assuming that reference vector VREF is sitting in
sector k, and that two nearest vectors are Vk and Vk+1,
following equation can be written:

1k1kkk
s

REF TVTV
2
TV +++=

vvv
 (1)

where Tk represents half of the vector Vk on-times in switching
period Ts.

 Fig. 3. Generation of VREF vector using V1, V2 and zero vector.

Splitting vector equation Eq. (1) into its real and imaginary
part, and after rearranging it follows:

()
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

+ β

α
π

π

π

π

V
V

k

k

k

k

V
T

T
T

DC

s

k

k

)
3

)1cos((3

)
3

cos(3

)
3

)1sin((3

)
3

sin(32/

1

 10 2 +−−= kk
s TT

T
T (2)

III. SYSTEMC REALIZATION

 As a language for high level modeling, SystemC supports
not only first realization of user’s project specification but the
first functional verification and creation of executable
description of intended design [4]. It is possible to divide
complete model in desired number of functional parts. This
means that designer might refine a module from a high level
functional specification down to a cycle-accurate RTL model
while other modules in the system remain at higher level of
abstraction. Modeling of SVPWM represents this
methodology.

SystemC model of SVPWM consists of a two processes.
These processes execute functions do_pwm_gen() and
do_svpwm(), concurrently. Test bench generate input stimulus
for SVPWM module and also record outputs for verification.
Interface of SVPWM module was shown in Fig. 4. Input ports
are alpha and beta components of reference vector and clock
signal for implemented PWM peripheral unit. Output ports are
driving signals for each transistor of three-phase inverter. It is
possible to use whichever module's signal for functional
verification. In this case, test bench observes signal pwm_int.

216

Function do_pwm_gen() is a part of process which
generates driving signals, and also signal pwm_int needed for
calling PWM interrupt service routine do_svpwm(), which
calculate needed duty cycle times. do_pwm_gen() function
triggers on every clock cycle and increment or decrement
timer of realized PWM unit. On every PWM timer underflow,
interrupt pwm_int is generated. Also, do_pwm_gen()
compares PWM timer and calculated duty cycle times, in
order to generate output driving signals.

Fig. 4. SystemC interface of SVPWM module.

Function do_svpwm() use fixed-point arithmetic, known as

IQ math, to calculate duty cycle times on every rising edge of
pwm_int signal generated in process described above. First,
sector number of reference vector is detected and than the
space vector times are calculated using Eqs. (1) and (2) . In
contrast to do_pwm_gen(), which is a thread, do_svpwm() is a
method process. Method process executes all instructions on
rising edge of pwm_int signal and ensures that all calculations
are accomplished between two transitions of this signal.

Test bench consists of a three processes. First, that is a
thread process sensitive to rising edge of pwm_int which
supplies input ports v_alpha_ref and v_beta_ref with packets
of data for verification of the module. For testing, input port
v_alpha_ref was an array of predefined values of sinusoidal
signal. Input port v_beta_ref use the same array but delayed in
order to represent cosine function (Fig. 5). Supplying inputs
v_alpha_ref and v_beta_ref in this manner can lead to

understandable results, by monitoring calculated duty cycle
times.

Fig. 5. Part of test bench program for supplying inputs.

Fig. 6. Conection between SVPWM module and test bench.

Second and third processes are method type. One prints

outputs on standard monitor, while second writes them to a
file (Fig. 6). Usage of these accessories is allowed including
the fstream C++ header in the project. Processes can monitor
not only output ports, but all signals inside the SVPWM
module. For example, in interface for SVPWM module (Fig.
6), there are three duty cycle signals named pwm_val_a,
pwm_val_b, and pwm_val_c which are compared with PWM
timer and generate output driving signals. These signals are
not ports, but their monitoring can help in the module
verification.

IV. AUTOCODING

 After verification in SystemC, SVPWM module can be
translated to hardware description language such are VHDL
or Verilog. Whole process of translating SystemC model to
hardware requires skilled engineers with experiences in both
design methodology, but this request is rarely satisfied at the
moment. This is a main reason for appliance of autocoding
approach. One of the tools available on the market for
automatic translation is SystemCrafter SC.
 SystemCrafter SC automatically synthesizes hardware
designs written in SystemC to HDL. The HDL can then be
used with commonly available tools to target Xilinx FPGAs.
This enables engineers and programmers to design, debug and
simulate hardware and systems using their existing C++
development environment. The result is improved

217

productivity and very fast simulations, plus all the benefits of
using their existing VHDL or Verilog design flow.

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

0.
00

0

0.
00

2

0.
00

3

0.
00

5

0.
00

6

0.
00

8

0.
00

9

0.
01

1

0.
01

2

0.
01

4

0.
01

5

0.
01

7

0.
01

8

0.
02

0

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

0.
00

0

0.
00

2

0.
00

3

0.
00

5

0.
00

6

0.
00

8

0.
00

9

0.
01

1

0.
01

2

0.
01

4

0.
01

5

0.
01

7

0.
01

8

0.
02

0

In Fig. 7., a place of the SystemCrafter tool in complete
designing process, is shown. Interface in Fig 4. of SVPWM
includes macro SC_SYNTHESIS used to distinguish between
standard SystemC and SystemCrafter compilation. As it is a
new tool on the market, SystemCrafter do not support all
aspects of SystemC modeling. For example, it is impossible to
initialize array after defining. It is allowed to initialize each
member of an array, individually. Dealing with inout ports is
not implemented yet. After refining SystemC model of
SVPWM, according to these limitations, SystemCrafter model
was attained. Gate level model generated by SystemCrafter
with the same test bench provided the same results, which was
proof of successful translation. SystemCrafter also generates
VHDL files, ready for FPGA implementation. Every process
from SystemC model was translated into one VHDL file.
These files are encapsulated into the main VHDL file also
generated by SystemCrafter. Together with library file
craftgatelibrary.h, included in SystemCrafter installation,
these files represents hardware implementation of SVPWM
module.

Fig. 8. v_alpha_ref and v_beta_ref inputs.

0
100
200
300
400
500
600
700
800
900

1000

0.
00

0

0.
00

1

0.
00

3

0.
00

4

0.
00

6

0.
00

7

0.
00

9

0.
01

0

0.
01

2

0.
01

3

0.
01

5

0.
01

6

0.
01

7

0.
01

9

0
100
200
300
400
500
600
700
800
900

1000

0.
00

0

0.
00

1

0.
00

3

0.
00

4

0.
00

6

0.
00

7

0.
00

9

0.
01

0

0.
01

2

0.
01

3

0.
01

5

0.
01

6

0.
01

7

0.
01

9

Fig. 9. SVPWM duty cycle times for two output phases.

VI. CONCLUSION

Fast growing of circuit compexity leads to larger usage
tools for automatic design. This example shows that future
design methodology moves through precise defined steps.
These steps are:

• Development of initial SystemC description.
• Writing a test bench.
• Debuging and verification of description.
• Refinement to more efficient hardware.
• Experimentation with trade-offs.
• Verification of the refined description.
• Usage of autocoding tool.
• Verification of the synthesized hardware.

 This paper describes and verifies above steps on the
example of hardware implemented SVPWM modulator used
in control of three-phase AC drives. In this case, SystemC has
approved as excellent enviroment for testing complex
algorithms and that together with VHDL autocoder
SystemCrafter represents powerful tool for high level
abstraction. Next step, would be testing of generated code on
real FPGA platform, which would show true power of used
tools.

Fig. 7. Using SystemCrafter SC tool for VHDL autocoding.

V. RESULTS

In Figs. 8 and 9, results of the test are shown. Input ports
v_alpha_ref and v_beta_ref are associated with sine and
cosine functions of magnitude |VREF| = 16384, which
represents normalized value of 0.5 p.u. Period of clock signal
for incrementing/decrementing PWM timer was 20 ns. For
that reason, period register in PWM unit is initialized to a
value of 1250, in order to achieve switching frequency of 20
kHz. Sine and cosine look-up tables had 400 values, so with
PWM frequency of 20 kHz, desired frequency of output was
50 Hz.

REFERENCES

[1] A. Avila, R. Santoyo, S. Martinez, G. Dieck,
"Hardware/Software Implementation of a Discrete Cosine
Transform Algorithm Using SystemC", IEEE, ReConFig 2005
Conference Proceedings, pp. 28-31 IEEE Computer Society
Digital Library, Puebla City, Mexico, 2005.

[2] P. R. Panda, "SystemC - A Modeling Platform Supporting
Multiple Design Abstractions", IEEE, ISSS 2001 Conference
Proceedings, pp. 75-80, Montreal, Canada, 2001.

Fig. 8 shows inputs v_alpha_ref and v_beta_ref, while Fig.
9 shows changes of calculated duty cycle values for two
output phases during test time of 20 ms. It can be seen that
duty cycle values are changed around half of the PWM period
register (= 625), that they have expected waveform with two
noticable hunchs in the region of peak values, and that they
are phase shifted by 120º. Results was same in both system
and gate level, and in accordance with expected.

[3] G. Dujic, Z. Mihajlovic, I. Mezei, "Using SystemC to Model
and Synthesize Position Measuring Controller on FPGA
Circuit", 14th International Symposium on Power Electronics -
Ee 2007, Novi Sad, Serbia, 2007.

[4] T. Grotker, System Design with SystemC, Hingham, MA,
USA, Kluwer Academic Publishers, 2002.

[5] P. Krause, Analysis of Electric Machinery and Drive Systems,
New York, John Wiley and Sons, 2002.

218

