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Abstract – In this paper we present the obtaining of sensor 

outputs, if the motor commands and the parameters which 
describe the organism’s environment are known. The organism 
is composed of an arm that is fixed to a basis. The arm is 
composed of four joints where there are some proprioceptive 
sensors. The arm has two fingers; each has an eye with 
photosensors. We perform a simulation to obtain the dimensions 
when the body changes, the environment changes and both 
change. 
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I. INTRODUCTION 

In the robotics, a steady challenge is the objects position in 
the 3D space. A main problem is how the robot understands 
the space, what it happens in robot’s “brain”, what is the 
position and orientation of its parts (joints). Also, it is 
necessary to know how its joints should move and rotate to 
particular space position. The parts of a manipulator, joints or 
tools with which it works, as well as the other objects in its 
environment, are described with two attributes: position and 
orientation. 

In order to describe the position and the orientation of some 
body in the space, a coordinate system is added to that body. 
Afterwards, the position and the orientation of that coordinate 
system are described in regard to some referent coordinate 
system. Each joint can be observed as a rigid body in relation 
to the referent system. The position and the rotation are 
defined for each joint. A rotation matrix is used to describe 
the orientation of each robot’s eye. 

In the second section we describe the problem of inverse 
kinematics, i.e. how the controllable coordinates of each joint 
are obtained. In the following section, we depict the robot’s 
sensorimotor system.  The fourth section describes the robot’s 
organism and its environment. The results of the experiment, 
obtained by using MATLAB, are depicted in the Section 5. 
Finally, in the last section we provide concluding remarks 
about dimensionality computing when the robot’s body 
changes, the environment changes and both change . 
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II. INVERSE KINEMATICS 

To move the manipulator from one to another location, it is 
necessary to move every joint for particular distance in 
particular time. Most frequently, every joint starts and ends 
the movement simultaneously, so the manipulator’s 
movement seems coordinated. The method for computing of 
these movement functions is known as the trajectory 
generation. This problem of inverse kinematics can have one 
or more solutions or no solution at all. A system of 
transcendental equations should be solved. If controllable 
coordinates can be obtained with an algorithm, then the 
manipulator is solvable. As example, we will observe a 
robot’s planar articulated arm with four joints, fixed to rigid 
base. Let l1, l2 and l3 denote the joint lengths which are given. 
Let the last coordinate (x,y) and the angle value θ=θ1+θ2+θ3 is 
given [4]. Then, we can write the following equations system 
Eq. 1: 
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The controllable coordinates of each joint should be found, 

i.e. the angles θ1, θ2 and θ3 should be computed according to 
Eq. (1). But this is a mathematic approach.  

The next step is to answer the question how one robot 
realizes the reality, especially the representation of the body, 
the environment, the space, the objects and their attributes. 
Also, what conclusion the robot should obtain about 
computing of input-output dependencies, and the minimal 
number of parameters, which are necessary to describe its 
inputs and outputs. 

In this paper we show that there is a simple procedure 
which a robot can utilize to notice the differences between the 
body and the external environment. The robot can control its 
body, but its environment cannot. Also, it is shown that the 
“brain” of robot can infer the dimensionality of external 
physical space and the additional nonspace parameters 
necessary for describing objects attributes or entities, without 
any prior knowledge.  

For that purpose it is observed one simply organism which 
consists of an articulated arm, fixed on a base. At the end of 
each finger, there is a composite eye with many photosensors. 
Also, the organism has proprioceptive devices, which signal 
the position of the different arm parts. The environment is 
consisting of a set of lights. Signal transmission is provided 
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from the sensors to the brain, which controls the effectors, 
which move the arm.  

 The space environment can be divided into two parts. The 
organism has a total control over the first part (organism 
body). The organism has partial control over the second part 
which is called organism environment. There are two types of 
inputs. The first ones are called proprioceptive, and the second 
ones are exteroceptive. The body is stationery when the 
proprioceptive is constant, and the environment is stationery 
when the exteroceptive is constant. 

III. MATHEMATICAL MODEL OF SENSORIMOTOR 
SYSTEM 

An environment whose sets of state E is a manifold E with 
dimension e is considered [1] [2] [5] [6]. The set of all 
observed sensor inputs S is a manifold S with dimension s and 
the set of all possible outputs M is a manifold M with 
dimension m. Their dependences are given by Eq. 2: 
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According to standard mathematical tools with manifolds, 

the tangent space {dS} of S is considered in a particular 
point ),( 000 EMS ψ= . 

In the {dS} two natural subspaces are identified: 
- a vector subspace  of sensor input changes, 

determined only by the motor command changes and 
0}{ =dEdS

- a vector subspace  of sensor input changes, 
determined only by the environment changes. 

0}{ =dMdS

The aforementioned can be described with Eqs. 3 and 4: 
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Their intersection is a manifold, too. 
In order to find the dependencies of defined entities’ 

dimensions, the term compensability is defined. The 
compensability defines a class of body movements with 
particular structure. When the body makes such movement, 
then its movement to return back to its original position is 
called compensating movement. If the body makes two 
consecutive compensating movements, then the global result 
movement is compensating, too.  This class of movement has 
a mathematical structure of group with identity element - 
stationarity. One element from this group is a compensating 
transformation of the exteroceptive body. In the same way a 
group of compensating transformation of the body-
environment system can be defined. The compensability 
implies that there is something common between particular 
body movement and particular environment movement. It 
could be stated that the body and the environment are 

incorporated in one entity called space. An approximation to 
space concept is made by sensorimotor approach [3]. Let 
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According to Eqs (5) and (6), the space of compensated 

movement has the dimension of T. The following equation 
applies to the dimension of these spaces: 
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To put it in a different way: d=p+e-b, where d=dim{dS} 

and b=dimT=dimψ(M0,E0). 

IV. ROBOT’S BODY AND ENVIRONMENT 

A case, when the organism is composed of an articulated 
arm fixed to a base, is considered. The arm consists of four 
joints. Each of the joints has five proprioceptive sensors. The 
arm has two fingers, and on each finger there is one eye. Each 
eye is composed of composite “retina” with 20 omnidirection 
photosensors. The environment consists of three lights (Fig. 
1). 

 
 
 environment 

(3 lights) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Robot’s articulated arm with 2 fingers and 2 eyes in an 
environment of 3 lights . 

 
The motor command that moves the organisms is 40 

dimensional vector. A 9-dimensional vector is jointed to the 
environment (the space position of the three lights). The 
values of sensor inputs (for exteroceptive and proprioceptive 
sensors) are obtained by using matrices and vectors by 
chance. The results of these accounts are made by using 
MATLAB [7]. The motor commands are simulated in the 
following way [6]: 
 

2 composite 
eyes 

robot’s 
articulated arm 
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where W1, W2, V1, V2, U1, U2 are matrices obtained from 
uniform distribution between -1 and 1, by chance, also and 
vectors μ1, μ2, ν1, ν2, τ1, τ2 .σ is arbitrary nonlinearity, in this 
case a hyperbolic tangent function. Ci,k are obtained by central 
normal distribution, whose variance could be conceived as the 
retina size, so the sensor changes are results from the eye 
rotation, which is from the same order as translation changes 
of the eye. In Eq. (8) the matrix Q contains the position of the 
joints, matrix P – position of the two eyes,  - the 
euler angles of i-th eye orientation, Rot – rotation matrix of i-
th eye, Ci,k – the relative position of k-th photosensor with 
respect to i-th eye, d – diaphragm blends of both eyes, L- the 
space positions of the three lights, θ - their illumination. Si,k

e 
presents sensor input of k-th exteroceptive sensor of i-th eye, 
Si

p – sensor input of i-th proprioceptive. M and E present the 
motor commands and control vector of environment, 
respectively.  

),,( ψϕθ ααα iii

V. RESULTS 

The 40 eigenvalues λi are obtained from covariance matrix 
of the 40 exteroceptive inputs, for 50 performed 
measurements. Then, the ratios between eigenvalue i to 
eigenvalue i+1 λi/λi+1 are calculated, where i is eigenvalue 
index. The maximum one of these ratios is found, which 
indicates the biggest change in the eigenvalue magnitude 
(Fig.2 - Fig. 4). The dimensions of the tangent spaces from 
this maximum ratio are obtained. From the Fig. 2, the 
obtained dimension b=4, in case when both the environment 
and the body change. 

Similarly, the maximum ratio of eigenvalues is found, in 
case only body changes, but the environment is stationary 
(Fig. 3). The last case is shown at Fig. 4 (only environment 
changes). 

From previous numerical accounts and from the graphic 
presentations of Fig. 2- Fig. 4, the dimensions are estimated: 
the body dimension (p), the environment dimension (e) and 
both (e). A relation between the dimensions of all defined 
entities should be found. It is shown that the dimension of 
compensated movements space is the same with the 
dimension of the space of the compensating movements (Eqs. 
(5) and (6)). For that reason the space of compensated 
movement has the dimension of T. The derived dimension of 
the rigid group (d) could be calculated in the following way: 
d=p+e-b=4+4-4 (the obtained dimensions depend on the 
motor command vector M and the environment vector E, 
which in our case are generated by chance). It could be 
concluded that the obtained dimension of tangent spaces is the 
same as the significant non-zero values. The maximal ratio 
between the i-th and the i+1-th eigenvalue, indicates the 
biggest change in the magnitude of the eigenvalues. 
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Fig. 2. Graphic presentation of the ratios λi/λi+1 when both, 

environment and body change. The dimension b=4. 
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Fig. 3. Graphic presentation of the ratios λi/λi+1 when the body 

changes. The dimension p=4. 
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Fig. 4. Graphic presentation of the ratios λi/λi+1 when the 

environment changes. The obtained dimension e=4. 
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VI. CONCLUSION 

In this article, we demonstrated a way of inferring the 
dependency between input and output of a robot, and a way of 
dimension computing, too. We have computed the dimension 
-the number of variables necessary to describe the 
environment (in our case it contained 3 lights). We made the 
dimension accounts for 3 cases: when the body changes, when 
the environment changes, and when both change. 
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