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Abstract - The curiosity is drive that push individuals for 
learning and self-development. This is why scientists see 
curiosity as field for develop mental robotics.  

In this article we will do retrospective about robot curiosity 
and what is achieved in recent years.  

We will see curiosity drive as investigatory and manipulator 
on one hand and as exploratory on the other. There will be 
arguments about achievements of intrinsic motivation system as 
basic issue for robots learning (in which robot have to focus on 
situations which are neither too predictable or familiar, nor too 
unpredictable or situations where nothing can be learnt). Also 
there will be few words about the idea of reaching a learning 
goal by composing multiply simple machine learning methods 
which is basic idea of bootstrap learning. 

As a conclusion, everything points that curiosity is a drive 
which pushes the robot towards situations in which it maximizes 
its learning progress.  

Keywords - curiosity, anticipation, intrinsic motivation, 
intrinsic development, self-motivating, bootstrap learning. 

I. INTRODUCTION 

Curiosity is often referred as a drive whose satisfaction 
should generate positive emotions in the robot. Sometimes 
this type of learning is also referred as task-independent or 
task non-specific. During the years of research, curiosity is 
usually related to notions like: novelty, anticipation, surprise, 
exploratory behavior, interest, play.  

But often curiosity is treated as kind of emotion. In the 
study of Arbib and Fellous (2004), it is written about the 
understanding of emotions in their functional context, 
distinguishing two aspects in emotions: external (emotional 
expression for communication and social coordination) and 
internal (emotion for organization of behavior – selection, 
attention and learning) aspect.  

There is another aspect of seeing curiosity - like necessary 
drive to act and interact with the environment. 
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II. LATEST ACHIEVEMENTS IN ARTIFICIAL 
CURIOSITY 

An interesting way of seeing robots’ learning is bootstrap 
learning. Kuipers B., Besson P., Modayil J. and Provost J. are 
investigating how the foundations of spatial knowledge can 
be learned from unsupervised sensory-motor experience, 
relying on Piaget & Inhelders theory that common sense and 
hence most other knowledge is built on knowledge of few 
foundational domains such as space, time, action, objects, 
causality and so on. The basic idea is to reach a learning goal 
by composing multiple simple machine learning methods 
using weak but general learning methods to create the 
prerequisites for applying stronger but more specific learning 
methods. 

The lowest level problem is putting a learning agent in an 
unknown environment with unknown sensors and effectors. 
The results are showing that learning even an apparently 
simple sensory-motor skill requires a large number of distinct 
learning algorithms, constructing a lattice of different 
representations of the sensory and motor capabilities of the 
robot. On the other hand Self-Organizing Distinctive-state 
Abstraction (SODA) is a new method for automatic discovery 
of high level perceptual features and large-scale actions for 
reinforcement learning in continuous environments. SODA 
combines perceptual abstractions of the agent sensory input 
into useful perceptual features and a temporal abstraction of 
the agent’s motor output into extended high-level actions, 
thereby reducing both the dimensionality and the diameter of 
the task.  

It is valuable for a robot to know its current position and 
orientation with respect to its map of the environment. This 
allows him to plan actions and predict their results using its 
map. A paradigm example of bootstrapping learning is place 
recognition. Here, weak learning method provides 
prerequisites for an abductive method – topological map-
building. The experiment is built on the abstraction of the 
continuous environment to a discrete set of distinctive states 
and (assume is that) the agent has previously learned a set of 
features and control laws adequate to provide reliable 
transitions among a set of distinctive states in the 
environment. The place recognition problem is incorporating 
several different learning methods: unsupervised learning, 
supervised learning and includes learned topological maps.  

For an agent to learn about an unknown world, it must 
learn to identify the objects in it, what their properties are, 
how they are classified, and how to recognize them. In this 
bootstrap learning scenario, the learning agent acquires 
working knowledge of objects from unsupervised sensory-
motor experience. The representation of objects is constructed 
from dynamic sensor readings in four steps: individuation, 
tracking, image description and categorization. Dynamic 
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readings are clustered and the clusters are tracked over time to 
identify objects, separating them both from the background of 
the static environment and from the noise of unexplainable 
sensor readings. This learning process leads the agent to 
experience the indoor environment with significant amounts 
of dynamic changes. So, the agent learned to individuate and 
track dynamic object in the scene and created categorization 
of shape models.  

This article gave an important research direction – learning 
to use vision as a sensory modality. This kind of learning will 
straddle the developmental boundary. 

The next case that we are going to discuss about is 
implementation of a habit system that automatically executes 
actions based on internal and external context (“A habit 
system for an interactive robot”, Hsiao K., Roy D.). A robot 
system explained in this study is with both actions: habitual 
(actions based on concept) and intentional (actions performed 
in explicit service of a goal). 

Actually, internal context of this system is a set of factors 
such as maintaining the mental model and external context 
includes factors coming from the environment, such as motor 
heat levels, proximity to surfaces and utterances from 
humans. So, the habits in this system include taking actions to 
reduce motor heat, avoid collisions with surfaces and interact 
coherently with humans. 

The ability to interact with the environment is facilitated by 
robot’s object-tracking mental-model, implemented as an 
internal three-dimensional simulation of it’s environment. 
The result is a representation of objects in the robot’s 
environment, along with the representation of the position of 
the human partner and the robot itself. Ripley (the robot) 
deals with verbal interactions by parsing the speech, finding 
word referents within its current mental model. If the robot 
determines that the situation is clear, there is a single course 
of action to take, it does it - take the action or respond. If no 
unique referent is provided the robot responds with question 
to resolve the ambiguity.  

In this system curiosity refers to a drive that causes the 
robot to look around at various areas of the table and its 
surrounding environment. Having an up-to-date mental model 
is an anticipatory action that enables the robot to respond 
more quickly to requests from the human partner. If we 
compare this curiosity motivation with animal’s drive to stay 
aware of its immediate environment, periods of exploratory 
learning would be analogous to an animal playfully trying 
previously untested actions, or to learn more about relatively 
unfamiliar objects. Another Ripley’s behavior is spoken 
interaction. But, this interaction system is not very robust to 
interruption, so this allows all interaction-related actions to be 
completed before returning control.  

What is accomplished is interactive robot capable of semi-
autonomously assisting humans in various tasks. 
Conversational assistive robot is capable of learning about its 
environment and interspersing its own physical and mental 
needs with the desires of the interacting humans. 

An intrinsic developmental algorithm designed to allow a 
mobile robot to incrementally progress through levels of 

increasingly sophisticated behavior is described in “Bringing 
up robot: Fundamental mechanisms for creating a self-
motivated, self-organizing architecture” (Blank D., Kumar D., 
Meeden L., Marshall J.).  

In the described developmental process robot starts with a 
basic, built-in innate behavior, exercises its sensors and 
motors, uses the mechanisms for abstraction and anticipation 
and discovers simple reflex behavior. The key components for 
the developmental algorithm are the processes of abstraction 
and anticipation in the context of a model of motivation.  

In the first experiment the implementation of the intrinsic 
developmental algorithm is by using abstractions to govern 
neural network learning. The goal is to create an autonomous 
developmental learner based on neural networks. The robot 
will choose its own actions, initially based on its innate 
reflexes and eventually based on its internal motivations. 
Serious problem of neural network is that during repetition of 
similar sensor signals, a neural controller could get over 
trained on the appropriate behavior for some state and forgot 
how to respond appropriately other important states 
(catastrophic forgetting). In order to avoid this problem, in 
this case a network governor, an algorithmic device for 
automatically regulation of the flow of training patterns into 
the network, is used. This network governor is implemented 
as an RAVQ (resource allocating vector quantize), abstraction 
mechanism that can dynamically generate as many categories 
as needed for the given domain. A purpose of a governor is a 
training supervisor. Once training is complete, the network 
can stand alone to perform the tasks on which it was trained. 
The targets of the network are generated by the system so as 
to anticipate what movement follows from a set of sonar 
inputs; actually the hidden layer of the network must be 
making appropriate abstractions.  

Second experiment is about using abstractions to create 
purposeful behaviors. The approach is for the network to 
operate on higher-level representational patterns derived from 
the sensory data, rather than on the raw sensory data itself. 
These higher-level representational patterns are created by an 
appropriate abstraction mechanism interposed between the 
environment and the controller network, serving to insulate 
the network from the robot’s direct experience. In this 
experiment SOM (self-organizing maps) transforms the high-
dimensional sensory data into a single compact, low-
dimensional representation of the robot’s perceptual state. 
These more abstract representations are then used by the 
controller network to determine the robot’s next action. This 
self-organizing system is very different from that which a 
human might design, but it is exactly appropriate for the 
robot’s sensors and view of the environment. The elements of 
intrinsic developmental algorithm are abstractions generated 
by the SOM’s and used by the feed-forward neural network. 
Actually the network is trained on anticipated movements. 

These intrinsic developmental algorithms are designed to 
allow a mobile robot to incrementally progress through levels 
of increasingly sophisticated behavior. The base concepts 
(essential mechanisms) of these algorithms are abstractions, 
anticipations and self-motivations and the ultimate goal of 
this developmental robotics program is to design a control 
architecture that could be installed within the robot so that 
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when the robot is turned on for the first time, it initiates an 
outgoing, autonomous developmental process. 

Method proposed in study “Active lexicon acquisition 
based on curiosity” (Ogino M., Kikuchi M., Asada M.) is 
based on the estimation of the co-occurrence probabilities 
between the words uttered by a caregiver and the visual 
features that a robot observes. This is a lexical acquisition 
model which makes use of curiosity to associate visual 
features of observed object with labels that is uttered by a 
caregiver.  In this model the curiosity is based on the 
evaluated saliency and it affects to the selection of objects to 
be attended and changes the learning rate for lexical 
acquisition.  

The system learns lexicons on shapes and colors of an 
observed object through communication with a caregiver. The 
robot selects one salient object; it acquires the visual features 
on shapes and colors through visual sensors and utters labels 
from its own knowledge. At the same time caregiver teaches a 
label that corresponds to the visual feature of the object that is 
unknown to the robot. So, curiosity that the robot feels has 
effects on the selection of the object to be attended. It consist 
two kinds of saliency: the habituation – low saliency for the 
visual features that is always observed and high for features 
that is observed for the first time; and the knowledge-driven, 
characterized by acquired knowledge – high saliency for the 
visual features that is not associated with any other label that 
is already learned.  

What we can learn and conclude from this simulation 
experiment is that the learning model with curiosity acquires 
the given labels much faster then the simple Hebbian learning 
model and it shows better performance in the environment in 
which the number of exposed objects gradually increases. 
(Important is that the agent cannot associate the visual feature 
with the word uttered by the caregiver without understanding 
which feature the uttered word is intended and this is solved 
by associating the uttered label with the unlearned feature 
based on curiosity.) More important is that in this method the 
robot and the caregiver have joint attention. This experiment 
is only the beginning of investigations in this area. So, it gave 
us basics for developing this method to a real robot and 
combines other constraints such as grammar information. 

Intelligent adaptive curiosity is a drive which pushes the 
robot towards situations in which it maximizes its learning 
process, is explanation of curiosity in paper “Intelligent 
adaptive curiosity: a source of self-development” (Oureyer P.-
Y., Kaplan F.). They see curiosity as a mechanism of self-
development while the complexity of its activity 
autonomously increases. In such environment the robot focus 
on situations which are nor too predictable, nor too 
unpredictable. 

Important is that when a robot is put in a complex, 
continuous, dynamic environment it will be able to figure out 
by itself without prior knowledge which situations in this 
environment have a complexity which is suited for efficient 
learning at a given moment of its development.  

The simple algorithm is: at each time step robot chooses 
the action for which the predicted learning progress is 

maximal. So viewing the learning progress as an internal 
reward, leads to a classical problem of reinforcement 
learning. The idea of the improved algorithm is that instead of 
comparing the mean error in prediction between situations 
which are successive in time, to compare the mean error in 
prediction between situations which are similar. 

The machine for prediction of the robot is composed by a 
set of experts which are specialized in particular zones of the 
sensory-motor space, and each expert possesses a set of 
training examples, and each training example is possessed by 
only one expert. This set of examples is used to make 
predictions. Important is that at the beginning there is only 
one expert, and as new examples are added the expert should 
be split into two expert depending on some criterion (split 
when the number of examples is above threshold set to NS). 
But there is another criterion which decides how the set of 
examples is split in two parts which will be inherited by the 
new expert (finding a dimension to cut). The experiment of 
this algorithm shows a crucial result from the developmental 
robotics point of view. It allows a robot to autonomously 
scale its behavior so that it explores sensory-motor situations 
of increasing complexity and avoids being trapped exploring 
situations in which there is nothing to learn. The robot 
focuses first systematically on one kind of situations and then 
focuses systemically on another kind of situations. 

The goal of this paper is to present a mechanism which 
enables a robot to autonomously develop in a process that is 
called self-development. IAC (Intelligent adaptive curiosity) 
algorithm allows a robot to autonomously scale the 
complexity of its learning situations by successively and 
actively focusing its activity on problems of progressively 
increasing difficulty. This is the first method which allows a 
developmental robot to go throw all steps autonomously and 
without prior knowledge.  

In another paper of Oudeyer and Kaplan (Discovering 
communications) they use intelligent adaptive curiosity 
system as a cognitive architecture of the robot for 
development of communications skills. This system 
maximized only the expected reward, so problems related to 
delayed rewards are avoid, what makes possible using simple 
prediction system that later can be used in a straightforward 
action selection loop.  

The explained experiment is called “Playground 
Experiment”. This involves a physical developmental robot 
capable of moving arms, neck, cheeks and producing sounds, 
which is installed into a play mat with various toys as well as 
with pre-programmed “adult” robot which can respond 
vocally to the developing robot in certain conditions.  

What is shown is that more complex linguistic 
communication shares the same kind of special dynamics that 
distinguishes it from interaction with simple objects. Learning 
to predict the effects of the vocal outputs is different from 
predicting the effects of the motor commands directed 
towards non-communicating objects. Communication 
situations are characterized by such kinds of different learning 
dynamics. This doesn’t mean that they are more difficult to 
learn then how to interact with these objects.  

In this system crucial difference is that the cognitive 
machinery as well as the motivation system is not specific to 
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communication. Using complex reinforcement machinery 
brings biases which are specific to a particular method. While 
using such a method with intrinsic motivation system will be 
useful for the future research.  

 In the paper of Stojanov and Kulakov (On curiosity in 
intelligent Robotic Systems) they describe their understanding 
of curiosity based on thinking that it is better “a system to do 
something, rather than nothing”. So they think is good for the 
agent, if there is no specific goal, via the introduction of 
curiosity the agent to get rewards whenever it steps into the 
unknown, which would hopefully improve its world model 
and its performance on subsequent tasks. The model of the 
agent that they describe has a collection of inborn schemas 
that are self-motivated to get executed. So, the process is 
guided by the primitive internal value systems based on the 
satisfaction on agent’s drives, and one of them is curiosity. 
There are four critical mechanisms that guide agent’s 
development: Abstraction mechanism – which enables the 
agent to deal with more and more complex situations with the 
same or less cognitive effort; Thinking and planning 
mechanism – which hypothetically combines various previous 
experiences into new knowledge; mechanism that provides 
emergence of more complex inner value and motivational 
systems according to which new experiences are judged, 
foreseen and executed; socialization mechanism that enables 
the agent to interpret in a special way inputs coming from 
other intelligent agents. In this model agent’s interaction with 
the environment is represented by a graph with nodes and 
links (knowledge graph).  

In their opinion curiosity is part of the motivational system 
and it can only partially influence the decision for taking 
actions, or may provoke internal interest for thinking about 
certain parts of agent’s environmental knowledge (represent 
by a knowledge graph). So, curiosity would only maximize 
the learning curve of an agent equipped with a mechanism for 
reinforcement learning.  

In context of curiosity and understanding they are 
distinguishing two kinds of feeling of understanding in their 
agent architecture: feeling of understanding for the working 
memory and feeling of understanding for the whole agent’s 
environmental knowledge. In a particular situation, average 
confidence (of conceptual node within a distance of few links 
in knowledge graph) is used to judge the situation at hand. If 
the confidence is high enough, situation (represented in the 
working memory) seems to be well understood. If it is low the 
situation is perplexing. The feeling of understanding for the 
whole agent’s environmental knowledge is calculated as an 
average of confidence of all schemas in the graph. So, 
curiosity drive in this architecture is defined as proportional 
function of the both feelings of understanding. The purpose is 
to create a tendency to raise the confidence of the agents’ 
knowledge, because if the agent is generally perplexed it is 
hardly possible that it would learn something new. Only when 
the agent is confident enough in its current active knowledge, 
it is willing to continue to explore new situations and learn 
new things. 

But the agent can understand something if it can find 
connection of new experience with something, or some 

experience, that it already understood. In the term of the 
architecture (the writers explain), the percept will be 
understood if a connection can be found between current 
percept and some percept that are part of some already 
understood schema. So, the transfer of knowledge occurs 
when a good analogy-mapping has been made. New schemas 
are constructed between nodes of the knowledge graph, and 
the interconnectivity is increased. 

The most important characteristic of intelligence in 
explained architecture is expectations. Whenever the 
expectations are met, the agent does not have to bother what it 
will do next. The problem for the agent appears when it is 
surprised (by the detected mismatch between the expected 
and real percepts) and it has to figure out the solution for the 
situation. So, the curiosity drive has a function to increase the 
unexpectancy and uncertainty by adding new nodes in the 
knowledge graph (meaning something new to be learn) 
through imagination or thinking, or made by analogy-making.     

The purpose of the paper is about curiosity not to be treated 
as simple driving forces which pushes agent to do something 
but as an elaborated mechanism which is inseparable from the 
internal knowledge representation and as guide for the 
process of thinking and imagination.  

III. CONCLUSION 

What we can say as conclusion of this paper is that after a 
half-century of continued research, the artificial intelligence is 
still far from developing any type of general purpose 
intelligent systems. But there are a lot of successful 
experiments that gave hope and that should be the basic issue 
for developing such system.   

The main idea of integrating the curiosity in artificial 
intelligence is to recreate the world of a human infant, an 
entity with a sense of being, with a notion for exploring its 
environment, building a robot which develops.  
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